Compiler Design
Chapter 1: Compiler Intro

GATE CS Lectures
by Monalisa

https://monalisacs.con?\

4 Section 7: Compiler Design(=5 mark)

» Lexical analysis, parsing, syntax-directed translation. Runtime environments.
Intermediate code generation . Local optimization, Data flow analyses: constant
propagation, liveness analysis, common subexpression elimination.

e Chapter 1: Introduction to Compiler [Languaggé processing System ,Compiler ,Phases
of Compiler , Lexical Analysis]

» Chapter 2: Parsing
» Chapter 3: SDT,Code optimization &Runtime environments

& https://www.youtube.com/@MonalisaCy

Language ProceSSing System https://monalisacs.com

The Software that compile & generate a .exe file is called as LPS. HLL l
The software that convert source code from one form language to Preprocessor
another form language is called as LPS. Pure HLL

y

Basic function of LPS
1.Preprocessor

Compiler

Assembly code |

2.Compiler

3.Assembler Assembler
4.Linker & Loader Relocatable code |
1.Preprocessor: Linker
Preprocessor is a tool that produces input for compilers without #. &L oader

It deals with macro-processing,file inclusion,language extension etc. -©*¢ l
Preprocessor also called as macro evaluator.

It is optional ,preprocessing is not required for language which

doesn’t supports #include & macro . Ex :Pascal.

https://www.youtube.com/@l\/lonalisacy

.

N

https://monalisacs.con?\

Macro processing:
A macro is a rule or pattern that specifies how a certain input sequence should be
mapped to an output sequence according to a defined procedure.

The mapping process that instantiates a macro into a specific output sequence is
known as macro expansion . Ex-#define.

File Inclusion:

Preprocessor includes header files into the program text.

When the preprocessor finds an #include directive it replaces it by the entire content
of the specified file.

Language extension :

These processors attempt to add-capabilities to the language by built-in macros.

For example, the language Equalis a database query language embedded in C.
2.Compiler:

The SW system that convert source code into Assembly language

Instruction .1t is optional not required for language like HTML,
DHTML,JavaScript etc.

https://www.youtube.com/@ Monalisacy

A 3.Assembler: hitps:/imonalisacs.comn,
» Assembler creates object code by translating assembly instruction into machine code.
» Object code is hexadecimal operated by Executable File Format.

» Object code is relocatable.

e 4.Linker and Loader:

 Alinker or link editor is a program that takes one-or'more objects generated by a
compiler and combines them into a single executable program.

e Three tasks of the linker are :

» Allocation : Getting memory partition from-OS to store object code.

» Relocation : Mapping of relocatable object code in the physical location.

» Linker : Combine all the external (.dll) file to the object code & generate .exe file.

o System wide start up file , system library file , system 1/O file etc will be added to
object code to generate .exe file.

 Loader :A loader is the part of an operating system that is
responsible for loading programs in memory, one of the
essential stages in the process of starting a program.

\ https://www.youtube.com/@ Monalisacy

. . Compi Ier VS Interpreter - https://mona]-isacs.conW\
Compiler: Translation of a program written in a source language into a semantically

equivalent program written in a target language .

Generate new program that runs without compiler.

It displays the errors after the whole program is executed .

Interpreter: a program that reads an executable program and produces the results of
running that program

Interpreters run programs “as is” ,Little or no‘preprocessing

It checks line by line for errors. Input
!

Source Program » Compiler » Target Program

J !

Error Message Output
Source Program
/\‘ Interpreter Output
Input 1

Er ror M essag e https://www.youtube.com/@MonaIisaCy

https://monalisacs.con?\

Compiler Interpreter

» Process of translation » Process of execution
» Scan entire text at a time » Scan the text line by line
» Request more memory but less time | > Request less memory but more time
» Performance is high » Performance-is low
» Reusability of structure & code > No concept of reusability

possible
» Code optimization is possible > Code optimization is not possible
» Debugging is difficult » Debugging is easy
» Fortran is 1%t language of compiler- | > Basic is 1%t language of interpreter
» Ex:C,C++,Fortran ,Pascal ,Cobol » Ex:SQL ,PLSQL ,Basic ,Lisp,

Smalltalk

» Ex of both :Java ,Python , scala

-

Prolog, Matlab , Perl

https://www.youtube.com/@ Monalisacy

~ Phases of Compiler

o A Compiler operates in phases, each of
which transforms the source program
from one representation into another.

» 1.Lexical Analysis

e 2.Syntax Analysis/Parsing

e 3.Syntax directed Translation(SDT)| Symbol
/Semantic Analysis Table

* 4.Intermediate code generation

» 5.Intermediate code optimization /
Machine Independent Code
optimization

» 6.Target code Generation/Machine
Dependent code generation

e 7.Target code optimization /Machine
dependent code optimization

Pure HLLl

Lexical Analysis
Token

Syntax Analysis
Parse Tree|

SDT
Annotated|Parse Tree

IC Generation
3 addressvcode

IC Optimization
3 addressvcode

TC Generation
ASL
TC Optimization

https://monalisacs.con?\

Error
Handler

AS I_ \ https://www.youtube.com/@MonalisaCy

{ Pass : https://monalisacs.corm\

([
([
\/
0’0
o

N

Number of time source code is scan during the process of compilation .

The Compiler can be single pass or multi pass.

Single pass: usually requires everything to be defined before being used in source
program.

Single pass require more memory but less time.

Multi pass: compiler may have to keep entire-program representation in memory.
Several phases can be grouped into one single pass and the activities of these phases
are interleaved during the pass.

Multi pass require less memory more time.

In general the compiler is 2 pass

The process of translation is divided into two part ;1. Front end 2.Back end
Front end : analysis (machine independent)

These include lexical and syntactic analysis, the creation of the symbol

table ,semantic analysis and the generation of intermediate code.

It convert source code into intermediate code.

https://www.youtube.com/@ Monalisacy

http

/It also includes error handling that goes along with each of these phases.

s://monaIiSﬁ.Eﬁ\

» Back end : synthesis (machine dependent)

Front end

[t includes code optimization phase and code generation along with the

necessary error handling and symbol table operations. Intermediate code

i

[t convert 3 address code into assembly language.

Back end

» Lexical Analysis: =

e |t scan the source code & divide into tokens where token is basic N
programming unit.Use Regular Expression for token identification. il +

o EX: a=b+c*2 =<id1><=><id2><+><id3><*><2>

* Syntax Analysis:

|t gets the token stream as input and generates syntax tree/parse
tree as the output.

e Syntax tree :It is a tree in which interior nodes are operators and
exterior nodes are operands . Same as derivation tree of CFG.

|t verify sentence is according to grammar or not.

Ex:id1=1d2+id3*2

1d2

/o

id3 2

i/ASL

*

N

https://www.youtube.com/@ Monalisacy

e

 Intermediate code generation: _
e |t converts input into output as intermediate code such as three- N

Semantic analysis: hipsimonalisacs.comn
It gets input from the syntax analysis as parse tree and checks whether the given
syntax is correct or not.

It performs type conversion of all the data types into same data types. N

It verify semantic of sentence . The sentence is meaningful or not. 'dl +
Ex:id1=id2+id3*2 R

a2 *

address code. 1d3 InttoReal
The three-address code consists of a-sequence of instructions, ™
each of which has atmost three operands 2

each three-address assignment instruction has atmost one
operator on the right side .

t I=inttoreal(2)

t2=id 3*tl

t3=i1d2+t2

1d1=t3

“t” 18 used for temp()l’al'y value. https://www.youtube.com/@Monansacy

4 Intermediate code optimization:

https://monalisacs.con?\

It gets the intermediate code as input and produces optimized intermediate code as
output without affecting outcome of source code.
Ex:t1=1d3*2
ld1=id2+t1
Target code generation:
It convert 3 address code into target code/assembly language.
Ex: LOAD R1, id3; MUL R2,R1,#2.0;
LOAD R3,id2; ADD R4,R3,R2,
STORE id1,R4;
Target code optimization:
Reducing number of register and-instruction without affecting outcome
Ex: LOAD R1, id3; MUL R1,R1,#2.0;
LOAD R2,id2; ADD R1,R1,R2;
STORE id1,R1;

https://www.youtube.com/@l\/lonalisacy

e

| a=b+c*2

Lexical Analysis

Syntax Analysis

id1=id2+id3*2

|C Generation

\ 4

t I=inttoreal (2)
t2=id 3*tl
t3=1d2+t2
ld1=t3

v\

idl +

IC Optimization

N
|d2/\

SDT

id3 2

N
id1 /+\

id2 /*\
id3 inttoaeal
2

A

t1=1d3*2
ld1=id2+t1

TC Geperation

v

LOAD R1, id3;
MUL R2,R1,#2.0;
LOAD R3,id2;
ADD R4,R3,R2;
STORE id1,R4;

TC Optimization

LOAD R1, id3;
MUL R1,R1,#2.0;
LOAD R2,id2;

lttps://monalisacs.corm\

ADD R1,R1,R?;

' STORE id1R1:

Symbol Table

a ld1

b 1d2

C 1d3

https://www.youtube.com/@Monalisacy

/ Sym bOI Tab I e https//monalisacs.con?\

It is the abstract data structure use by compiler to store all the information about
Identifiers used in the program.

» Every phases of compiler interact with symbol table.

* Whenever an identifier is detected in any of the phases, it is stored in the symbol table.

» During first 2 phases information store in symbol table & in remaining phases the
information of the symbol table will be used.

» It allows to find the record for each identifier quickly and to store or retrieve data from
that record.

» Information of identifier store into symbol table are name ,value ,type ,size ,offset or
address ,scope ,lifetime ,token ,other information.

» Function or operation of symbol table:1.insert,2.Modify,3.Lookup,4.Delate

» Implementation of symbol table: Hash table is the suitable DS for symbol table because
of fastness & lookup operation .

L no | Name |value | Type | Size | offset | Scope | lifetime | token | Other info
1 a 10 Int 2 X100 | Global | Fun idl |
2 b 20 Int 2 X110 | Local | Fun id2 |

3 C 30 int 2 X120 Local program id3 |1 hitps://Www. youtube.com/@l\/lonalisacy

o Error Handling:

https://monalisacs.con?\

Each phase can encounter errors. After detecting an error, a phase must handle the error so that
compilation can proceed.

Lexical errors occur in separation of tokens ,declaration of variable , exceeding length
,unmatched string.

Ex:int x y=10;

Syntax errors occur during construction of syntax tree and grammar of language.

Ex: int x=20(no semicolon) ,x=20 int;

Semantic errors occur due to meaning of sentence and type conversion.

It also check any variable must be declared before its use.

Ex: Int x=*"toc’;

Code optimization errors occur when the result is affected by the optimization.

Code generation error shows when.code is missing etc.

The error that can be handled during process of compilation called as exception.
Programmer is responsible for handling exception.

The error that can occur during process of execution is called as fatal error

& admin is responsible for this.

https://www.youtube.com/@ Monalisacy

/"~ Lexical Analysis

https://monalisacs.con?\

Lexical analysis is the process of converting a sequence of characters into tokens.
Lexical analysis is also called a lexical analyzer , scanner, Lexer ,Tokenizer .

We can also produce a lexical analyzer automatically by specifying the patternsto a
lexical-analyzer generator.

lexical-analyzer generator called Lex (or Flex)-

Lexeme:

Collection or group of characters forming tokens is called Lexeme.

It is a sequence of characters in the source program that matches the pattern for a
token and is identified by the lexical analyzer as an instance of that token .
Token:

The process of forming tokens from stream of characters is called tokenization.
A token is a string of characters, categorized according to the rules.

The sequence of char having logical meaning is called as token.

Token is basic programming unit.

https://www.youtube.com/@ Monalisacy

/+ Rules for token: Ppsiimonalisacs oM

» 1.0ne token for each keyword , identifiers, constants ,such as numbers and literal.

e 2.0ne tokens for the operators ,either individually or in classes.

» 3.0ne tokens for each punctuation symbol ,such as left and right parentheses ,comma
,and semicolon .

* 4.0One token for statement written

e Pattern:

e A pattern is a description of the form that the lexemes of a token may take.

» Pattern is the rule to describe RE & to recognize string.

» Akeyword as a token, the pattern isjust the sequence of characters that form the
keyword.

» For identifiers and some other tokens, the pattern is a more complex structure that is
matched by many strings.

e EX: Printf ("Total=%d\n", score) ;

o <Printf> <(> <*Total=%d\n"> <> <id1> <)><;>

(13 29

\ https://www.youtube.com/@ Monalisacy

The Role Of The Lexical Analyzer :
Its main task is to read the input characters and produce as output a sequence of
tokens that the parser uses for syntax analysis.
Upon receiving a “get next token” command from the parser, the lexical analyzer
reads input characters until it can identify the next token.

Store attribute information in symbol table then send to parser.

For LA stream of char is input & sequence of token'is output.

LA generate token depending on next symbol:
Buffering technique is use to read the group-of char at a time instead of char by char.
As characters are read from left to right, each character is stored in the buffer to form
a meaningful token

Source | Lexical

Program| Analyzer

Token

https://monalisacs.con?\

_» Forward pointer

A

Get next token

Symbol
Table

Parser

al=|b

+

C - -

Beginning of Token

Look ahea(I pointer

https://www.youtube.com/@l\/lonalisacy

4 Secondary Function Of Lexical Analyzer: hitps:/imonalisacs. comm™

N

1.Stripping out comments and whitespace (blank ,newline , tab) .

2.Keep track of the number of new line characters seen ,so it can associate a line number
with each error message.

3.Creation of symbol table & store attribute information in symbol table

Token representation require less memory than ASCH representation.

Token format is convenient structure to verify the structure of program using CFG.

As CFG contain only terminal & nonterminal & all programming language can be
defined by CFG.

Lexical errors occur in separation of tokens.,declaration of variable , exceeding length
,unmatched string ,illegal char.

Error Recovery Strategies In Lexical Analysis:

1. Panic mode recovery: Deletion of successive characters from the token until error is
resolved

2. Deleting an extraneous character.

3. Inserting a missing character.

4. Replacing an incorrect character by a correct character.

5. Transforming two adjacent characters.

https://www.youtube.com/@ Monalisacy

6 GATE 2000-Q18, ISRO 2015-Q25:The number of tokens in the followinfT =™
statement is printf (i = %d, &I = %x", 1, &) ;

* (A)3 (B)26 (C)10 (D)21

e Ans:10

e |ISRO CS 2017 — May: The output of a lexical analyzer is
* (A)Anparse Tree

* (B) Intermediate Code

e (C)Machine Code

* (D)A stream of Token

* Ans :(D)A stream of Token

& https://www.youtube,com/@MonalisaCy

	Slide 1
	Slide 2
	Slide 3: Language Processing System
	Slide 4
	Slide 5
	Slide 6: Compiler vs Interpreter
	Slide 7
	Slide 8: Phases of Compiler
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Symbol Table :
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

