
Compiler Design

Chapter 1: Compiler Intro

GATE CS Lectures

 by Monalisa
M

on
ali

sa
CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Section 7: Compiler Design(≅5 mark)

 Lexical analysis, parsing, syntax-directed translation. Runtime environments.

Intermediate code generation . Local optimization, Data flow analyses: constant

propagation, liveness analysis, common subexpression elimination.

 Chapter 1: Introduction to Compiler [Language processing System ,Compiler ,Phases

of Compiler , Lexical Analysis]

 Chapter 2: Parsing

 Chapter 3: SDT,Code optimization &Runtime environments

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Language Processing System

 The Software that compile & generate a .exe file is called as LPS.

 The software that convert source code from one form language to

another form language is called as LPS.

 Basic function of LPS

 1.Preprocessor

 2.Compiler

 3.Assembler

 4.Linker & Loader

Preprocessor

Compiler

Assembler

Linker

&Loader
 1.Preprocessor:

 Preprocessor is a tool that produces input for compilers without #.

 It deals with macro-processing,file inclusion,language extension etc.

 Preprocessor also called as macro evaluator.

 It is optional ,preprocessing is not required for language which

doesn’t supports #include & macro . Ex :Pascal.

HLL

Pure HLL

Assembly code

Relocatable code

.exeM
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Macro processing:

 A macro is a rule or pattern that specifies how a certain input sequence should be

mapped to an output sequence according to a defined procedure.

 The mapping process that instantiates a macro into a specific output sequence is

known as macro expansion . Ex-#define.

 File Inclusion:

 Preprocessor includes header files into the program text.

 When the preprocessor finds an #include directive it replaces it by the entire content

of the specified file.

 Language extension :

 These processors attempt to add capabilities to the language by built-in macros.

 For example, the language Equal is a database query language embedded in C.

 2.Compiler:

 The SW system that convert source code into Assembly language

instruction .It is optional not required for language like HTML,

DHTML,JavaScript etc.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 3.Assembler:

 Assembler creates object code by translating assembly instruction into machine code.

 Object code is hexadecimal operated by Executable File Format.

 Object code is relocatable.

 4.Linker and Loader:

 A linker or link editor is a program that takes one or more objects generated by a
compiler and combines them into a single executable program.

 Three tasks of the linker are :

 Allocation : Getting memory partition from OS to store object code.

 Relocation : Mapping of relocatable object code in the physical location.

 Linker : Combine all the external (.dll) file to the object code & generate .exe file.

 System wide start up file , system library file , system I/O file etc will be added to
object code to generate .exe file.

 Loader :A loader is the part of an operating system that is
responsible for loading programs in memory, one of the
essential stages in the process of starting a program.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Compiler vs Interpreter
 Compiler: Translation of a program written in a source language into a semantically

equivalent program written in a target language .

 Generate new program that runs without compiler.

 It displays the errors after the whole program is executed .

 Interpreter: a program that reads an executable program and produces the results of

running that program

 Interpreters run programs “as is” ,Little or no preprocessing

 It checks line by line for errors.

CompilerSource Program Target Program

Input

OutputError Message

Interpreter

Source Program

Input
Output

Error Message

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Compiler Interpreter

➢ Process of translation ➢ Process of execution

➢ Scan entire text at a time ➢ Scan the text line by line

➢ Request more memory but less time ➢ Request less memory but more time

➢ Performance is high ➢ Performance is low

➢ Reusability of structure & code

possible

➢ No concept of reusability

➢ Code optimization is possible ➢ Code optimization is not possible

➢ Debugging is difficult ➢ Debugging is easy

➢ Fortran is 1st language of compiler ➢ Basic is 1st language of interpreter

➢ Ex:C,C++,Fortran ,Pascal ,Cobol

,Smalltalk

➢ Ex:SQL ,PLSQL ,Basic ,Lisp ,

Prolog, Matlab , Perl

➢ Ex of both :Java ,Python , scala

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Phases of Compiler
 A Compiler operates in phases, each of

which transforms the source program

from one representation into another.

 1.Lexical Analysis

 2.Syntax Analysis/Parsing

 3.Syntax directed Translation(SDT)

/Semantic Analysis

 4.Intermediate code generation

 5.Intermediate code optimization /

Machine Independent Code

optimization

 6.Target code Generation/Machine

Dependent code generation

 7.Target code optimization /Machine

dependent code optimization

Lexical Analysis

Syntax Analysis

SDT

IC Generation

IC Optimization

TC Generation

TC Optimization

Symbol

Table
Error

Handler

Pure HLL

Token

Parse Tree

Annotated Parse Tree

3 address code

3 address code

ASL

ASL

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Pass:

 Number of time source code is scan during the process of compilation .

 The Compiler can be single pass or multi pass.

 Single pass: usually requires everything to be defined before being used in source

program.

 Single pass require more memory but less time.

 Multi pass: compiler may have to keep entire program representation in memory.

 Several phases can be grouped into one single pass and the activities of these phases

are interleaved during the pass.

 Multi pass require less memory more time.

 In general the compiler is 2 pass

❖ The process of translation is divided into two part :1. Front end 2.Back end

 Front end : analysis (machine independent)

 These include lexical and syntactic analysis, the creation of the symbol

table ,semantic analysis and the generation of intermediate code.

 It convert source code into intermediate code.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 It also includes error handling that goes along with each of these phases.

 Back end : synthesis (machine dependent)

 It includes code optimization phase and code generation along with the

necessary error handling and symbol table operations.

 It convert 3 address code into assembly language.

Front end

HLL

Intermediate code

Back end
ASL

 Lexical Analysis:

 It scan the source code & divide into tokens where token is basic

programming unit.Use Regular Expression for token identification.

 Ex: a=b+c*2 ⇒<id1><=><id2><+><id3><*><2>

 Syntax Analysis:

 It gets the token stream as input and generates syntax tree/parse

tree as the output.

 Syntax tree :It is a tree in which interior nodes are operators and

exterior nodes are operands . Same as derivation tree of CFG.

 It verify sentence is according to grammar or not.

 Ex:id1=id2+id3*2

=

id1 +

id2 *

id3 2M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Semantic analysis:
 It gets input from the syntax analysis as parse tree and checks whether the given

syntax is correct or not.
 It performs type conversion of all the data types into same data types.
 It verify semantic of sentence .The sentence is meaningful or not.
 Ex:id1=id2+id3*2

=

id1 +

id2 *

id3 InttoReal

2

 Intermediate code generation:
 It converts input into output as intermediate code such as three-

address code.
 The three-address code consists of a sequence of instructions ,

each of which has atmost three operands
 each three-address assignment instruction has atmost one

operator on the right side .
 t l=inttoreal(2)
 t2=id 3*tl
 t3=id2+t2
 Id1=t3

 “t” is used for temporary value.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Intermediate code optimization:

 It gets the intermediate code as input and produces optimized intermediate code as

output without affecting outcome of source code.

 Ex:t1=id3*2

 Id1=id2+t1

 Target code generation:

 It convert 3 address code into target code/assembly language.

 Ex: LOAD R1, id3; MUL R2,R1,#2.0;

 LOAD R3,id2; ADD R4,R3,R2;

 STORE id1,R4;

 Target code optimization:

 Reducing number of register and instruction without affecting outcome

 Ex: LOAD R1, id3; MUL R1,R1,#2.0;

 LOAD R2,id2; ADD R1,R1,R2;

 STORE id1,R1;

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Lexical Analysis

Syntax Analysis

SDT

IC Generation

IC Optimization

TC Generation

TC Optimization

Symbol Table

a Id1

b Id2

c id3

a=b+c*2

id1=id2+id3*2

=

id1 +

id2 *

id3 2
=

id1 +

id2 *

id3 inttoreal

2

t l=inttoreal(2)

t2=id 3*tl

t3=id2+t2

Id1=t3

t1=id3*2

Id1=id2+t1

LOAD R1, id3;

MUL R2,R1,#2.0;

 LOAD R3,id2;

ADD R4,R3,R2;

 STORE id1,R4;

LOAD R1, id3;

MUL R1,R1,#2.0;

LOAD R2,id2;

ADD R1,R1,R2;

STORE id1,R1;

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Symbol Table :
 It is the abstract data structure use by compiler to store all the information about

identifiers used in the program.
 Every phases of compiler interact with symbol table.
 Whenever an identifier is detected in any of the phases, it is stored in the symbol table.
 During first 2 phases information store in symbol table & in remaining phases the

information of the symbol table will be used.
 It allows to find the record for each identifier quickly and to store or retrieve data from

that record.
 Information of identifier store into symbol table are name ,value ,type ,size ,offset or

address ,scope ,lifetime ,token ,other information.
 Function or operation of symbol table:1.insert,2.Modify,3.Lookup,4.Delate
 Implementation of symbol table: Hash table is the suitable DS for symbol table because

of fastness & lookup operation .

L no Name value Type Size offset Scope lifetime token Other info

1 a 10 Int 2 X100 Global Fun id1 …….

2 b 20 Int 2 X110 Local Fun id2 …….

3 c 30 int 2 X120 Local program id3 …….

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Error Handling:
 Each phase can encounter errors. After detecting an error, a phase must handle the error so that

compilation can proceed.

 Lexical errors occur in separation of tokens ,declaration of variable , exceeding length

,unmatched string.

 Ex:int x y=10;

 Syntax errors occur during construction of syntax tree and grammar of language.

 Ex: int x=20(no semicolon) ,x=20 int;

 Semantic errors occur due to meaning of sentence and type conversion.

 It also check any variable must be declared before its use.

 Ex: Int x=‘toc’;

 Code optimization errors occur when the result is affected by the optimization.

 Code generation error shows when code is missing etc.

 The error that can be handled during process of compilation called as exception.

 Programmer is responsible for handling exception.

 The error that can occur during process of execution is called as fatal error

& admin is responsible for this.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Lexical analysis is the process of converting a sequence of characters into tokens.

 Lexical analysis is also called a lexical analyzer , scanner, Lexer ,Tokenizer .

 We can also produce a lexical analyzer automatically by specifying the patterns to a

lexical-analyzer generator.

 lexical-analyzer generator called Lex (or Flex) .

 Lexeme:

 Collection or group of characters forming tokens is called Lexeme.

 It is a sequence of characters in the source program that matches the pattern for a

token and is identified by the lexical analyzer as an instance of that token .

 Token:

 The process of forming tokens from stream of characters is called tokenization.

 A token is a string of characters, categorized according to the rules.

 The sequence of char having logical meaning is called as token.

 Token is basic programming unit.

Lexical Analysis

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Rules for token:

 1.One token for each keyword , identifiers, constants ,such as numbers and literal.

 2.One tokens for the operators ,either individually or in classes.

 3.One tokens for each punctuation symbol ,such as left and right parentheses ,comma

,and semicolon .

 4.One token for statement written “ ” .

 Pattern:

 A pattern is a description of the form that the lexemes of a token may take.

 Pattern is the rule to describe RE & to recognize string.

 A keyword as a token, the pattern is just the sequence of characters that form the

keyword.

 For identifiers and some other tokens, the pattern is a more complex structure that is

matched by many strings.

 Ex: Printf ("Total=%d\n", score) ;

 <Printf> <(> <“Total=%d\n”> <,> <id1> <)><;>

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 The Role Of The Lexical Analyzer :
 Its main task is to read the input characters and produce as output a sequence of

tokens that the parser uses for syntax analysis.
 Upon receiving a “get next token” command from the parser, the lexical analyzer

reads input characters until it can identify the next token.
 Store attribute information in symbol table then send to parser.
 For LA stream of char is input & sequence of token is output.
 LA generate token depending on next symbol.
 Buffering technique is use to read the group of char at a time instead of char by char.
 As characters are read from left to right, each character is stored in the buffer to form

a meaningful token

Lexical

Analyzer
Parser

Symbol

Table

Source

Program

Get next token

Token a = b + c - -

Beginning of Token Look ahead pointer

Forward pointer

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Secondary Function Of Lexical Analyzer:
 1.Stripping out comments and whitespace (blank ,newline , tab) .

 2.Keep track of the number of new line characters seen ,so it can associate a line number
with each error message.

 3.Creation of symbol table & store attribute information in symbol table
 Token representation require less memory than ASCII representation.
 Token format is convenient structure to verify the structure of program using CFG.
 As CFG contain only terminal & nonterminal & all programming language can be

defined by CFG.
 Lexical errors occur in separation of tokens ,declaration of variable , exceeding length

,unmatched string ,illegal char.
 Error Recovery Strategies In Lexical Analysis:
 1. Panic mode recovery: Deletion of successive characters from the token until error is

resolved
 2. Deleting an extraneous character.
 3. Inserting a missing character.
 4. Replacing an incorrect character by a correct character.
 5. Transforming two adjacent characters.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE 2000-Q18, ISRO 2015-Q25:The number of tokens in the following C

statement is printf ("i = %d, &i = %x", i , &i) ;

 (A) 3 (B) 26 (C) 10 (D) 21

 Ans :10

 ISRO CS 2017 – May: The output of a lexical analyzer is

 (A) A parse Tree

 (B) Intermediate Code

 (C)Machine Code

 (D)A stream of Token

 Ans :(D)A stream of Token M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

	Slide 1
	Slide 2
	Slide 3: Language Processing System
	Slide 4
	Slide 5
	Slide 6: Compiler vs Interpreter
	Slide 7
	Slide 8: Phases of Compiler
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Symbol Table :
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

