
Compiler Design

Chapter 1: Compiler Intro

GATE CS Lectures

 by Monalisa
M

on
ali

sa
CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Section 7: Compiler Design(≅5 mark)

 Lexical analysis, parsing, syntax-directed translation. Runtime environments.

Intermediate code generation . Local optimization, Data flow analyses: constant

propagation, liveness analysis, common subexpression elimination.

 Chapter 1: Introduction to Compiler [Language processing System ,Compiler ,Phases

of Compiler , Lexical Analysis]

 Chapter 2: Parsing

 Chapter 3: SDT,Code optimization &Runtime environments

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Language Processing System

 The Software that compile & generate a .exe file is called as LPS.

 The software that convert source code from one form language to

another form language is called as LPS.

 Basic function of LPS

 1.Preprocessor

 2.Compiler

 3.Assembler

 4.Linker & Loader

Preprocessor

Compiler

Assembler

Linker

&Loader
 1.Preprocessor:

 Preprocessor is a tool that produces input for compilers without #.

 It deals with macro-processing,file inclusion,language extension etc.

 Preprocessor also called as macro evaluator.

 It is optional ,preprocessing is not required for language which

doesn’t supports #include & macro . Ex :Pascal.

HLL

Pure HLL

Assembly code

Relocatable code

.exeM
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Macro processing:

 A macro is a rule or pattern that specifies how a certain input sequence should be

mapped to an output sequence according to a defined procedure.

 The mapping process that instantiates a macro into a specific output sequence is

known as macro expansion . Ex-#define.

 File Inclusion:

 Preprocessor includes header files into the program text.

 When the preprocessor finds an #include directive it replaces it by the entire content

of the specified file.

 Language extension :

 These processors attempt to add capabilities to the language by built-in macros.

 For example, the language Equal is a database query language embedded in C.

 2.Compiler:

 The SW system that convert source code into Assembly language

instruction .It is optional not required for language like HTML,

DHTML,JavaScript etc.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 3.Assembler:

 Assembler creates object code by translating assembly instruction into machine code.

 Object code is hexadecimal operated by Executable File Format.

 Object code is relocatable.

 4.Linker and Loader:

 A linker or link editor is a program that takes one or more objects generated by a
compiler and combines them into a single executable program.

 Three tasks of the linker are :

 Allocation : Getting memory partition from OS to store object code.

 Relocation : Mapping of relocatable object code in the physical location.

 Linker : Combine all the external (.dll) file to the object code & generate .exe file.

 System wide start up file , system library file , system I/O file etc will be added to
object code to generate .exe file.

 Loader :A loader is the part of an operating system that is
responsible for loading programs in memory, one of the
essential stages in the process of starting a program.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Compiler vs Interpreter
 Compiler: Translation of a program written in a source language into a semantically

equivalent program written in a target language .

 Generate new program that runs without compiler.

 It displays the errors after the whole program is executed .

 Interpreter: a program that reads an executable program and produces the results of

running that program

 Interpreters run programs “as is” ,Little or no preprocessing

 It checks line by line for errors.

CompilerSource Program Target Program

Input

OutputError Message

Interpreter

Source Program

Input
Output

Error Message

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Compiler Interpreter

➢ Process of translation ➢ Process of execution

➢ Scan entire text at a time ➢ Scan the text line by line

➢ Request more memory but less time ➢ Request less memory but more time

➢ Performance is high ➢ Performance is low

➢ Reusability of structure & code

possible

➢ No concept of reusability

➢ Code optimization is possible ➢ Code optimization is not possible

➢ Debugging is difficult ➢ Debugging is easy

➢ Fortran is 1st language of compiler ➢ Basic is 1st language of interpreter

➢ Ex:C,C++,Fortran ,Pascal ,Cobol

,Smalltalk

➢ Ex:SQL ,PLSQL ,Basic ,Lisp ,

Prolog, Matlab , Perl

➢ Ex of both :Java ,Python , scala

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Phases of Compiler
 A Compiler operates in phases, each of

which transforms the source program

from one representation into another.

 1.Lexical Analysis

 2.Syntax Analysis/Parsing

 3.Syntax directed Translation(SDT)

/Semantic Analysis

 4.Intermediate code generation

 5.Intermediate code optimization /

Machine Independent Code

optimization

 6.Target code Generation/Machine

Dependent code generation

 7.Target code optimization /Machine

dependent code optimization

Lexical Analysis

Syntax Analysis

SDT

IC Generation

IC Optimization

TC Generation

TC Optimization

Symbol

Table
Error

Handler

Pure HLL

Token

Parse Tree

Annotated Parse Tree

3 address code

3 address code

ASL

ASL

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Pass:

 Number of time source code is scan during the process of compilation .

 The Compiler can be single pass or multi pass.

 Single pass: usually requires everything to be defined before being used in source

program.

 Single pass require more memory but less time.

 Multi pass: compiler may have to keep entire program representation in memory.

 Several phases can be grouped into one single pass and the activities of these phases

are interleaved during the pass.

 Multi pass require less memory more time.

 In general the compiler is 2 pass

❖ The process of translation is divided into two part :1. Front end 2.Back end

 Front end : analysis (machine independent)

 These include lexical and syntactic analysis, the creation of the symbol

table ,semantic analysis and the generation of intermediate code.

 It convert source code into intermediate code.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 It also includes error handling that goes along with each of these phases.

 Back end : synthesis (machine dependent)

 It includes code optimization phase and code generation along with the

necessary error handling and symbol table operations.

 It convert 3 address code into assembly language.

Front end

HLL

Intermediate code

Back end
ASL

 Lexical Analysis:

 It scan the source code & divide into tokens where token is basic

programming unit.Use Regular Expression for token identification.

 Ex: a=b+c*2 ⇒<id1><=><id2><+><id3><*><2>

 Syntax Analysis:

 It gets the token stream as input and generates syntax tree/parse

tree as the output.

 Syntax tree :It is a tree in which interior nodes are operators and

exterior nodes are operands . Same as derivation tree of CFG.

 It verify sentence is according to grammar or not.

 Ex:id1=id2+id3*2

=

id1 +

id2 *

id3 2M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Semantic analysis:
 It gets input from the syntax analysis as parse tree and checks whether the given

syntax is correct or not.
 It performs type conversion of all the data types into same data types.
 It verify semantic of sentence .The sentence is meaningful or not.
 Ex:id1=id2+id3*2

=

id1 +

id2 *

id3 InttoReal

2

 Intermediate code generation:
 It converts input into output as intermediate code such as three-

address code.
 The three-address code consists of a sequence of instructions ,

each of which has atmost three operands
 each three-address assignment instruction has atmost one

operator on the right side .
 t l=inttoreal(2)
 t2=id 3*tl
 t3=id2+t2
 Id1=t3

 “t” is used for temporary value.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Intermediate code optimization:

 It gets the intermediate code as input and produces optimized intermediate code as

output without affecting outcome of source code.

 Ex:t1=id3*2

 Id1=id2+t1

 Target code generation:

 It convert 3 address code into target code/assembly language.

 Ex: LOAD R1, id3; MUL R2,R1,#2.0;

 LOAD R3,id2; ADD R4,R3,R2;

 STORE id1,R4;

 Target code optimization:

 Reducing number of register and instruction without affecting outcome

 Ex: LOAD R1, id3; MUL R1,R1,#2.0;

 LOAD R2,id2; ADD R1,R1,R2;

 STORE id1,R1;

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Lexical Analysis

Syntax Analysis

SDT

IC Generation

IC Optimization

TC Generation

TC Optimization

Symbol Table

a Id1

b Id2

c id3

a=b+c*2

id1=id2+id3*2

=

id1 +

id2 *

id3 2
=

id1 +

id2 *

id3 inttoreal

2

t l=inttoreal(2)

t2=id 3*tl

t3=id2+t2

Id1=t3

t1=id3*2

Id1=id2+t1

LOAD R1, id3;

MUL R2,R1,#2.0;

 LOAD R3,id2;

ADD R4,R3,R2;

 STORE id1,R4;

LOAD R1, id3;

MUL R1,R1,#2.0;

LOAD R2,id2;

ADD R1,R1,R2;

STORE id1,R1;

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Symbol Table :
 It is the abstract data structure use by compiler to store all the information about

identifiers used in the program.
 Every phases of compiler interact with symbol table.
 Whenever an identifier is detected in any of the phases, it is stored in the symbol table.
 During first 2 phases information store in symbol table & in remaining phases the

information of the symbol table will be used.
 It allows to find the record for each identifier quickly and to store or retrieve data from

that record.
 Information of identifier store into symbol table are name ,value ,type ,size ,offset or

address ,scope ,lifetime ,token ,other information.
 Function or operation of symbol table:1.insert,2.Modify,3.Lookup,4.Delate
 Implementation of symbol table: Hash table is the suitable DS for symbol table because

of fastness & lookup operation .

L no Name value Type Size offset Scope lifetime token Other info

1 a 10 Int 2 X100 Global Fun id1 …….

2 b 20 Int 2 X110 Local Fun id2 …….

3 c 30 int 2 X120 Local program id3 …….

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Error Handling:
 Each phase can encounter errors. After detecting an error, a phase must handle the error so that

compilation can proceed.

 Lexical errors occur in separation of tokens ,declaration of variable , exceeding length

,unmatched string.

 Ex:int x y=10;

 Syntax errors occur during construction of syntax tree and grammar of language.

 Ex: int x=20(no semicolon) ,x=20 int;

 Semantic errors occur due to meaning of sentence and type conversion.

 It also check any variable must be declared before its use.

 Ex: Int x=‘toc’;

 Code optimization errors occur when the result is affected by the optimization.

 Code generation error shows when code is missing etc.

 The error that can be handled during process of compilation called as exception.

 Programmer is responsible for handling exception.

 The error that can occur during process of execution is called as fatal error

& admin is responsible for this.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Lexical analysis is the process of converting a sequence of characters into tokens.

 Lexical analysis is also called a lexical analyzer , scanner, Lexer ,Tokenizer .

 We can also produce a lexical analyzer automatically by specifying the patterns to a

lexical-analyzer generator.

 lexical-analyzer generator called Lex (or Flex) .

 Lexeme:

 Collection or group of characters forming tokens is called Lexeme.

 It is a sequence of characters in the source program that matches the pattern for a

token and is identified by the lexical analyzer as an instance of that token .

 Token:

 The process of forming tokens from stream of characters is called tokenization.

 A token is a string of characters, categorized according to the rules.

 The sequence of char having logical meaning is called as token.

 Token is basic programming unit.

Lexical Analysis

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Rules for token:

 1.One token for each keyword , identifiers, constants ,such as numbers and literal.

 2.One tokens for the operators ,either individually or in classes.

 3.One tokens for each punctuation symbol ,such as left and right parentheses ,comma

,and semicolon .

 4.One token for statement written “ ” .

 Pattern:

 A pattern is a description of the form that the lexemes of a token may take.

 Pattern is the rule to describe RE & to recognize string.

 A keyword as a token, the pattern is just the sequence of characters that form the

keyword.

 For identifiers and some other tokens, the pattern is a more complex structure that is

matched by many strings.

 Ex: Printf ("Total=%d\n", score) ;

 <Printf> <(> <“Total=%d\n”> <,> <id1> <)><;>

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 The Role Of The Lexical Analyzer :
 Its main task is to read the input characters and produce as output a sequence of

tokens that the parser uses for syntax analysis.
 Upon receiving a “get next token” command from the parser, the lexical analyzer

reads input characters until it can identify the next token.
 Store attribute information in symbol table then send to parser.
 For LA stream of char is input & sequence of token is output.
 LA generate token depending on next symbol.
 Buffering technique is use to read the group of char at a time instead of char by char.
 As characters are read from left to right, each character is stored in the buffer to form

a meaningful token

Lexical

Analyzer
Parser

Symbol

Table

Source

Program

Get next token

Token a = b + c - -

Beginning of Token Look ahead pointer

Forward pointer

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Secondary Function Of Lexical Analyzer:
 1.Stripping out comments and whitespace (blank ,newline , tab) .

 2.Keep track of the number of new line characters seen ,so it can associate a line number
with each error message.

 3.Creation of symbol table & store attribute information in symbol table
 Token representation require less memory than ASCII representation.
 Token format is convenient structure to verify the structure of program using CFG.
 As CFG contain only terminal & nonterminal & all programming language can be

defined by CFG.
 Lexical errors occur in separation of tokens ,declaration of variable , exceeding length

,unmatched string ,illegal char.
 Error Recovery Strategies In Lexical Analysis:
 1. Panic mode recovery: Deletion of successive characters from the token until error is

resolved
 2. Deleting an extraneous character.
 3. Inserting a missing character.
 4. Replacing an incorrect character by a correct character.
 5. Transforming two adjacent characters.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE 2000-Q18, ISRO 2015-Q25:The number of tokens in the following C

statement is printf ("i = %d, &i = %x", i , &i) ;

 (A) 3 (B) 26 (C) 10 (D) 21

 Ans :10

 ISRO CS 2017 – May: The output of a lexical analyzer is

 (A) A parse Tree

 (B) Intermediate Code

 (C)Machine Code

 (D)A stream of Token

 Ans :(D)A stream of Token M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

	Slide 1
	Slide 2
	Slide 3: Language Processing System
	Slide 4
	Slide 5
	Slide 6: Compiler vs Interpreter
	Slide 7
	Slide 8: Phases of Compiler
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Symbol Table :
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

