
Algorithms

Chapter 2: Brute Force

GATE CS Lectures

 by Monalisa
M

on
ali

sa
CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Section 5: Algorithms

 Searching, sorting, hashing. Asymptotic worst case time and space complexity. Algorithm design
techniques : greedy, dynamic programming and divide‐and‐conquer . Graph traversals, minimum
spanning trees, shortest paths

 Chapter 1:Algorithim Analysis:-Algorithm intro , Order of growth ,Asymptotic notation, Time
complexity, space complexity, Analysis of Recursive & non recursive program, Master theorem]

 Chapter 2:Brute Force:-Sequential search, Selection Sort and Bubble Sort , Radix sort, Depth first Search
and Breadth First Search.

 Chapter 3: Decrease and Conquer :- Insertion Sort, Topological sort,Binary Search .

 Chapter 4: Divide and conquer:-Min max problem , matrix multiplication ,Merge sort ,Quick Sort , Binary
Tree Traversals and Related Properties .

 Chapter 5: Transform and conquer:- Heaps and Heap sort, Balanced Search Trees.

 Chapter 6: Greedy Method:-knapsack problem , Job Assignment problem, Optimal merge, Hoffman
Coding, minimum spanning trees, Dijkstra’s Algorithm.

 Chapter 7: Dynamic Programming:-The Bellman-Ford algorithm ,Warshall’s and Floyd’s Algorithm ,Rod
cutting, Matrix-chain multiplication ,Longest common subsequence ,Optimal binary search trees

 Chapter 8: Hashing.

 Reference : Introduction to Algorithms by Thomas H. Cormen

 Introduction to the Design and Analysis of Algorithms, by Anany Levitin

 My Note

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Chapter 2:Brute Force

 Sequential search

 Selection Sort and Bubble Sort , Radix sort

 Depth first Search and Breadth First Search.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

❖ Brute Force

➢ Brute force is a straightforward approach to solving a problem,usually directly based on the

problem statement and definitions of the concepts involved.

 The “force” implied by the strategy’s definition is that of a computer and not that of one’s

intellect.

 “Just do it!” would be another way to describe the prescription of the brute-force approach.

And often, the brute-force strategy is indeed the one that is easiest to apply.

 The searching problem deals with finding a given value, called a search key, in a given set

➢ Sequential Search:

 ALGORITHM SequentialSearch (A[0…,n-1],K)

 //Input : An array A[0..n-1] and a search key K

 //Output : The index of the first element in A that matches K or -1 if no matching founds.

 i = 0

 while i<n and A[i]≠ K do

 i = i+1

 if i<n return i

 else return -1

5 3 8 1 6

0 1 2 3 4

 Let K=8
 i=0 ,0<5 and A[0] ≠ K
 i=1, 1<5 and A[1] ≠ K
 i=2, 2<5 and A[2] = K
 2<5 return 2

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Worst & Avg-case running time=O(n)

 Best case running time=O(1)

 The average number of key comparisons made by Sequential search is (n + 1)/2

 The sorting problem is to rearrange the items of a given list in nondecreasing order .

❖ Selection Sort and Bubble Sort:

 Application of the brute-force approach to the problem of sorting are Selection Sort and

Bubble Sort : given a list of n orderable items rearrange them in nondecreasing order.

➢ Selection Sort

 We start selection sort by scanning the entire given list to find its smallest element and

exchange it with the first element, putting the smallest element in its final position in the

sorted list.

 Then we scan the list, starting with the second element,to find the smallest among the last n - 1

elements and exchange it with the second element, putting the second smallest element in its

final position.

 After n - 1 passes, the list is sorted

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 ALGORITHM SelectionSort(A[0..n - 1])

 //Input: An array A[0..n - 1] of orderable elements

 //Output: Array A[0..n - 1] sorted in nondecreasing order

 for i ← 0 to n - 2 do

 min ← i

 for j ← i + 1 to n - 1 do

 if A[j] < A[min] min ← j

 swap A[i] and A[min]

8 4 6 9 2 3 1

1 4 6 9 2 3 8

1 2 6 9 4 3 8

1 2 3 9 4 6 8

1 2 3 4 9 6 8

1 2 3 4 6 9 8

1 2 3 4 6 8 9

 The input size is number of elements n;basic operation is the key comparison A[j] < A[min].

 The number of times it is executed depends only on the array size and is given by the sum:

 Time Complexity C(n) =σ𝑖=0
𝑛−2∗ σ𝑗=𝑖+1

𝑛−1 1

 = σ𝑖=0
𝑛−2 [(n − 1) − (i + 1) + 1]

 = σ𝑖=0
𝑛−2 (n − 1 − i) =

𝑛 𝑛−1

2
∈ Θ(n2)

 Thus, selection sort is a Θ(n2) algorithm on best case & worst case inputs.

 The number of key swaps is only Θ(n), or, more precisely, n − 1.

 This property distinguishes selection sort positively from many

other sorting algorithms.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

➢ Bubble Sort

 Another brute-force application to the sorting problem is to compare adjacent elements of the

list and exchange them if they are out of order.

 By doing it repeatedly, we end up “bubbling up” the largest element to the last position on

the list.

 The next pass bubbles up the second largest element, and so on, until after n - 1 passes the list

is sorted.

 ALGORITHM BubbleSort(A[0..n - 1])

 //Input: An array A[0..n - 1] of orderable elements

 //Output: Array A[0..n - 1] sorted in nondecreasing order

 for i ← 0 to n - 2 do

 for j ← 0 to n - 2 - i do

 if A[j] > A[j+1] swap A[j] and A[j + 1]

 Time Complexity C(n) =σ𝑖=0
𝑛−2∗ σ𝑗=0

𝑛−2−𝑖 1

 = σ𝑖=0
𝑛−2 [(n −2−i) − 0 + 1]

 = σ𝑖=0
𝑛−2 (n − 1 − i)

 =
𝑛 𝑛−1

2
∈ Θ(n2)

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 The number of key swaps, however, depends on the input.

 In the worst case of decreasing arrays, it is the same as the number of key comparisons:Θ(n2)

8 >? 4 6 9 2 3 1

4 8 >? 6 9 2 3 1

4 6 8 > ? 9 2 3 1

4 6 8 2 9 >? 3 1

4 6 8 2 3 9 >? 1

4 6 8 9 >? 2 3 1

4 6 8 2 3 1 9

4 > ? 6 8 2 3 1 9

4 6 > ? 8 2 3 1 9

4 6 8 >? 2 3 1 9

4 6 2 8 > ? 3 1 9

4 6 2 3 8 > ? 1 9

4 6 2 3 1 8 9

4 >? 6 2 3 1 8 9

4 6 >? 2 3 1 8 9

4 2 6 > ? 3 1 8 9

4 2 3 6 > ? 1 8 9

4 2 3 1 6 8 9

1 2 3 4 6 8 9

…
…

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Radix Sort:
 Sorting algorithms called radix sorts are linear but in terms of the total number of input bits.
 These algorithms work by comparing individual bits or pieces of keys rather than keys.
 The idea of Radix Sort is to do digit by digit sort starting from least significant digit to most

significant digit.

101 22 18 64 77 99 59 132 564 580 339 7

 There are maximum 3 digit so 3 passes starting from LSB to MSB
 Pass 1:

0 1 2 3 4 5 6 7 8 9

580 101
22,

132

64,

564
7,

77
18

59,

99,

339

 Pass 2:

0 1 2 3 4 5 6 7 8 9

7,

101 18 22
132,

339 59
64,

564 77 580 99

 Pass 3:

0 1 2 3 4 5 6 7 8 9

7,18,22,59,

64,77,99

101,

132
339

564,

580

 Time Complexity O(n+k)

 n=number of element

 k=digit size of maximum

number

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Representations of graphs
 Two standard ways to represent a graph G=(V, E) as an adjacency lists or as an adjacency

matrix.
 Where V=set of all vertices in G. E=set of all edges in G.
 Either way applies to both directed and undirected graphs.

 Undirected graph: Edges without direction.Directed graph: Edges with direction.

 |V|=Number of vertices in G / Order of graph

 |E|=Number of edges in G/Size pf graph
 Adjacency-list representation provides a compact way to represent sparse graphs—those for

which |E| is much less than |V|2.
 Adjacency-matrix representation, when the graph is dense—|E| is close to |V|2 .

 Weighted Graph: Edges with weight.

(a)Undirected graph , (b)Adjacency-list representation, (c)Adjacency-matrix representation

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 (a)Directed graph (b)Adjacency-list representation (c)Adjacency-matrix representation .

 The adjacency-list representation of a graph G=(V,E) consists of an array Adj of |V| lists, one

for each vertex in V .

 For each u∈ V , Adj [u] consists of all the vertices adjacent to u in G.

 Adjacency-matrix representation of a graph G consists of a |V| ×|V| matrix

 A =(aij) such that

 aij =1 if (i,j) ∈ E , aij = 0 otherwise.

 Depth-first search

 The strategy followed by depth-first search is, to search “deeper”.

 Depth-first search explores edges out of the most recently discovered

vertex v that still has unexplored edges leaving it.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Once all of v’s edges have been explored, the search “backtracks” to explore edges leaving the
vertex from which v was discovered.

 This process continues until we have discovered all the vertices that are reachable from the
original source vertex.

 If any undiscovered vertices remain, then depth-first search selects one of them as a new
source, and it repeats the search from that source.

 The algorithm repeats this entire process until it has discovered every vertex
 Depth-first search also timestamps each vertex.
 Each vertex v has two timestamps: the first timestamp v.d records when v is first discovered ,

and the second timestamp v.f records when the search finishes examining v’s adjacency list.
 These timestamps are integers between 1 and 2|V|, since there is one discovery event and one

finishing event for each of the |V| vertices. For every vertex u, u.d < u.f
 Every vertex u has been assigned a discovery time u.d and a finishing time u.f .

 It is convenient to use a stack to trace the operation of depth-first search.

 We push a vertex onto the stack when the vertex is reached for the first

time called discovery time.

 We pop a vertex off the stack when it becomes a dead end called

finishing time.

 DFS traversal is similar to preorder traversal in case of Tree.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 ALGORITHM DFS(G)

 //Input: Graph G = (V,E)

 //Output: Graph G with its vertices marked with consecutive integers in the order they are first

//encountered by the DFS traversal

 mark each vertex in V with 0 as a mark of being “unvisited”

 count ← 0

 for each vertex v in V do

 if v is marked with 0

 dfs(v)

 dfs(v)

 //visits recursively all the unvisited vertices connected to vertex v by a path and numbers them

//in the order they are encountered via global variable count

 count ← count + 1; mark v with count

 for each vertex w in V adjacent to v do

 if w is marked with 0; dfs(w)

 For the adjacency matrix representation, the traversal time is in Θ(|V |2) ,

and for the adjacency list representation, it is in Θ(|V | + |E|) where |V |

and |E| are the number of the graph’s vertices and edges, respectively .

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 DFS forms a depth-first forest comprising several depth-first trees.
 We can define four edge types in depth-first forest .
 1. Tree edges are edges in the depth-first forest. Edge (u,v) is a tree edge if v was first discovered by

exploring edge (u,v).
 2. Back edges are those edges (u,v) connecting a vertex u to an ancestor in a depth-first tree. We

consider self-loops, which may occur in directed graphs, to be back edges.
 3. Forward edges are those nontree edges (u,v) connecting a vertex u to a descendant in a depth-

first tree.
 4. Cross edges are all other edges. They can go between vertices in the same depth-first tree, as long

as one vertex is not an ancestor of the other, or they can go between vertices in different depth-first
trees.

 Example 1:

A

B C

D E F G

H

 DFS traversal

 A1/16 ,B2/15, D3/14, H4/13, G5/10, C6/9, F7/8,E11/12

 1:A,B,D,H,G,C,F,E

 Some more DFS sequence are

 2:A,B,E,H,D,F,C,G,

 3:H,G,C,F,A,B,D,E

 4:A,C,F,H,G,E,B,D

A

B

D

H

G

C

F

E

(a)Graph , (b) Traversal’s stack , (c) DFS sequence (d) DFS tree

B

B

B

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Example 2:

 DFS traversal with time stamp

 a1/12 ,c2/11, d3/4, f5/10, b6/9, e7/8 , g13/20 ,h14/19, i15/18, j16/17

a

c

d
f

b

e

g

h

i

j

 Example 3:
y z s t

x w v u

 DFS traversal with time stamp

 s1/10 , z2/9 , y3/6 ,x4/5 , w7/8 , t11/16

,v12/13 , u14/15 s

z

y

x

w

t

v u
F

B

C

C

BC

C

 Theorem (Parenthesis theorem)
 In any depth-first search of a (directed or undirected) graph G=(V,E) ,

for any two vertices u and v, exactly one of the following three
conditions holds:

 the intervals [u.d,u.f] and [v.d,v.f] are entirely disjoint, and neither u
nor v is a descendant of the other in the depth-first forest,

 the interval [u.d,u.f] is contained entirely within the interval [v.d,v.f],
and u is a descendant of v in a depth-first tree, or

 the interval [v.d,v.f] is contained entirely within the interval [u.d,u.f] ,
and v is a descendant of u in a depth-first tree.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Applications of DFS include checking connectivity and checking acyclicity of a graph.
 Checking a graph’s connectivity can be done as follows.
 Start a DFS traversal at an arbitrary vertex and check, after the algorithm halts, whether all the

vertices of the graph will have been visited.
 If they have, the graph is connected; otherwise, it is not connected.
 We can use DFS for identifying connected components of a graph .
 As for checking for a cycle presence in a graph, we can take advantage of the graph’s

representation in the form of a DFS forest. If the latter does not have back edges, the graph is
clearly acyclic.

 If there is a back edge from some vertex u to its ancestor v , the graph has a cycle that
comprises the path from v to u via a sequence of tree edges in the DFS forest followed by the
back edge from u to v.

 Other applications of DFS are finding articulation points of a graph,(A vertex of a connected
graph is said to be its articulation point if its removal with all edges incident to it breaks the
graph into disjoint pieces.)

 Ex: Consider Discovery & finishing time of a 4 vertices graph . check connectivity
 A)1/6 , 2/5 , 3/4 ,7/8
 Disconnected, 2 component
 B)1/8 ,2/7 ,3/6 ,4/5
 Connected

 C)1/4 ,2/3 ,5/8 , 6/7

 Disconnected, 2 component

 D)1/2 ,3/4 ,5/6 ,7/8

 Disconnected, 4 component

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Breadth-first search
 Given a graph G = (V,E) and a distinguished source vertex s, breadth-first search

systematically explores the edges of G to “discover” every vertex that is reachable from s.
 It computes the distance (smallest number of edges) from s to each reachable vertex.
 It also produces a “breadth-first tree” with root s that contains all reachable vertices.
 For any vertex reachable from s, the simple path in the breadth-first tree from s to v

corresponds to a “shortest path” from s to v in G, that is, a path containing the smallest
number of edges.

 The algorithm works on both directed and undirected graphs.
 It is convenient to use a queue to trace the operation of breadth-first search.
 The queue is initialized with the traversal’s starting vertex & marked as visited.
 On each iteration, the algorithm identifies all unvisited vertices that are adjacent to the front

vertex, marks them as visited, and adds them to the queue; after that, the front vertex is
removed from the queue.

 BFS forest of graph can also have two kinds of edges: tree edges and cross edges.
 Tree edges are the ones used to reach previously unvisited vertices.
 Cross edges connect vertices to those visited before, they connect vertices

either on the same or adjacent levels of a BFS tree
 BFS uses just one timestamp discovery time/finishing time.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 ALGORITHM BFS(G)
 //Input: Graph G = (V , E)
 //Output: Graph G with its vertices marked with consecutive integers in the order they are

//visited by the BFS traversal
 mark each vertex in V with 0 as a mark of being “unvisited”
 count ← 0
 for each vertex v in V do
 if v is marked with 0
 bfs(v)
 bfs(v)
 //visits all the unvisited vertices connected to vertex v by a path and numbers them in the order

//they are visited via global variable count
 count ← count + 1; mark v with count and initialize a queue with v
 while the queue is not empty do
 for each vertex w in V adjacent to the front vertex do
 if w is marked with 0
 count ← count + 1; mark w with count
 add w to the queue
 remove the front vertex from the queue
 Breadth-first search has the same efficiency as depth-first search:
 It is in Θ(|V |2) for the adjacency matrix representation and in Θ(|V | + |E|)

for the adjacency list representation.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Example 1: A

B C

D E F G

H

Ex 1 BFS traversal

A1 ,B2, C3, D4, E5 , F6, G7, H8

1:A,B,C,D,E,F,G,H

Some more BFS sequence are

2:A,C,B,G,F,D,E,H , 3:H,D,E,F,G,B,C,A , 4:H,G,F,E,D,C,B,A

A

B C

D E F G

H
 Example 2:

Ex 2 BFS traversal

a1 ,c2, d3, e4, f5 , b6, g7, h8 ,j9,i10

 Example 3:

y z s t

x w v u

Ex 3 BFS traversal

u1 ,t2, v3, s4, w5 , z6, x7, y8

a

c d e

f b

g

h j

i

u

t v

s w

z x

y

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 BFS is similar to level order traversal of Tree
 BFS can be used to check connectivity and acyclicity of a graph.
 shortest-path distance :from s to v as the minimum number of edges in any path from vertex s to

vertex v;
 BFS can be used for finding a shortest path with the fewest number of edges between two given

vertices.
 Main facts about depth-first search (DFS) and breadth-first search (BFS)

DFS BFS

Data Structure stack queue

Number of vertex orderings Two ordering One ordering

Edge types(Directed graph) Tree , back ,forward , cross Tree , cross edges

Applications Connectivity ,Acyclicity ,

Articulation point

Connectivity ,Acyclicity ,shortest

path

Traversal in Tree Same as Pre Order Same as level order

Algorithm technique Back tracking Branch &bound

Find component of graph Connected component ,Strongly connected

component, Biconnected component.

Efficiency for adjacency list adjacency matrix :Θ (|V |2) ,adjacency list: Θ(|V | + |E|)

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Graph Component
 Connected Component :An undirected graph is connected if there is a path between any two

vertices in the graph .
 If the graph is not connected then maximal connected subgraph known as connected graph .
 Strongly connected component: of a directed graph G=(V,E) is a maximal set of vertices such

that for every pair of vertices u and v are reachable from each other.
 Every Directed graph is a DAG of its strongly connected component .

 An articulation point of G is a vertex whose removal

disconnects G.

 A bridge of G is an edge whose removal disconnects G.

 A biconnected component of G is a maximal set of edges such

that any two edges in the set lie on a common simple cycle

 The articulation points are the heavily shaded vertices , the

bridges are the heavily shaded edges, and the biconnected

components are the edges in the shaded regions.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Q 1:Consider a BFS of a undirected graph from a node r ,let D(r,u) and D(r,v) represent
lengths of shortest path from r to u and v respectively . If u is visited before v then what is
valid relation between them.

 Ans : D(r,u)≤ D(r,v)
 Q 2:G be a graph with n vertex and k component .If a vertex is removed from G .Then number

of component in resultant graph most lie between
 A) k , n B)k-1, k+1 C)k-1, n-1 D)k-1 ,n-k
 Ans : C)k-1, n-1
 GATE IT 2007 | Q 24:Consider a DFS of DAG which of the following is true for all edges

u→v .
 A)d(u) <d(v) B)d(u)<f(v) C)f(u)<f(v) D)f(u)>f(v)

 DFS 1 :x1/6 ,u2/5 ,v3/4 ,

 DFS 2 :x1/6,v2/3,u4/5

 Ans : D)f(u)>f(v)

 GATE IT 2005 | Q 14:In a depth-first traversal of a Graph G with n

vertices, k edges are marked as tree edges. The number of connected

components in G is A)k B)k+1 C)n-k-1 D)n-k

 Ans: D)n-k

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 ISRO2020-32 : G is an undirected graph with vertex set {v1, v2, v3, v4, v5, v6, v7}and edge

set {v1v2, v1v3, v1v4 ,v2v4, v2v5, v3v4, v4v5, v4v6, v5v6, v6v7 }. A breadth first search of the

graph is performed with v1 as the root node. Which of the following is a tree edge?

 A)v2v4 B)v1v4 C)v4v5 D)v3v4 v1

v2
v3

v4

v5 v6 v7

 Ans : B)v1v4

 GATE IT 2006 | Q 47: Consider the depth-first-search of an

undirected graph with 3 vertices P, Q, and R. Given that

 d(P)=5 units d(Q)=6 units d(R)=14 unit

 f(P)=12 units f(Q)=10 units f(R)=18 units

 Which one of the following statements is TRUE about the graph?

 A) There is only one connected component

 B)There are two connected components, and P and R are connected

 C)There are two connected components, and Q and R are connected

 D)There are two connected components, and P and Q are connected

 P5/12 ,Q6/10 ,R14/18

 Two component (P,Q),(R).

 Ans: (D)

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Breadth-first search
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

