https://monalisacs.com/

Compiler Design Chapter 2: Parsing

GATE CS Lectures by Monalisa

Section 7: Compiler Design(\cong 5 mark)

- Lexical analysis, parsing, syntax-directed translation. Runtime environments. Intermediate code generation . Local optimization, Data flow analyses: constant propagation, liveness analysis, common subexpression elimination.
- Chapter 1: Introduction to Compiler [Language processing System ,Compiler ,Phases of Compiler , Lexical Analysis]
- Chapter 2: Parsing [Syntax Analysis, CFG, Ambiguous Grammar, Recursive Grammar, Left Factoring, Top down parser : LL(1), FIRST & FOLLOW, Bottom up parser : shift-reduce parsing, LR(0), SLR(1), CLR(1), LALR(1), Operator Precedence grammar]
- Chapter 3: SDT, Code optimization & Runtime environments

Syntax Analysis

- Syntax analysis is the second phase of the compiler. It gets the input from the tokens and generates a syntax tree or parse tree.
- The parsing technique is implemented by CFG.
- Functions of the parser :
- 1. It verifies the structure generated by the tokens based on the grammar.
- 2. It constructs the parse tree.
- 3. It reports the errors.
- 4. It performs error recovery.
- Parser can detect errors during construction of syntax tree and grammar of language.
- Ex: such as an arithmetic expression with unbalanced parentheses.
- Parser cannot detect errors such as:
- 1. Variable re-declaration
- 2. Variable initialization before use.
- 3. Data type mismatch for an operation.
- The above issues are handled by Semantic Analysis phase

Error-Recovery Strategies

1. Panic mode, 2. Phrase level, 3. Error productions, 4. Global correction

• Types of parser :

- There are two types of parsers for grammars: topdown and bottom-up.
- Top-down methods build parse trees from the top (root) to the bottom (leaves), while bottom-up methods start from the leaves and work their way up to the root.
- In either case, the input to the parser is scanned from left to right, one symbol at a time.
- **CFG:** Finite Set of rules which are used to generate the string is called as grammar.
- It has 4 tuples G=(V,T,P,S)
- <u>Classification of Grammar</u>
- Grammar can be classified in two ways
- 1.Based on Derivation tree
 - Ambiguous Grammar
 - Unambiguous Grammar
- 2.Based on number of string
 - Recursive Grammar
 - Non Recursive Grammar

- <u>Ambiguous Grammar</u>: The grammar is said to be ambiguous if more than one parse tree exist for at least one string.
- Ex:S→aS|Sa|a ,w=aaa
- Ambiguity of CFG is undecidable.
- <u>Unambiguous Grammar</u> :
- The grammar is said to be unambiguous if there exist unique parse tree for every input string. Ex:S →aSb| ∈,w=aabb
- No algorithm exist to convert ambiguous grammar to unambiguous grammar except operator grammar.
- The Ambiguous grammar which can't be converted to unambiguous is called inherent Ambiguous grammar .
- Operator |Expression grammar can be converted to unambiguous by redefine grammar using associativity & operator precedence.
- Precedence: id,bracket > ^ > *,| > + , -
- ^ is right associative,*,|,+,- are left associative.

Removal of Ambiguity from Expression Grammar

- $E \rightarrow E + E \mid E E \mid E^*E \mid E^*E \mid (E) \mid id$
- W=id + id * id
- This is a ambiguous grammar.
- In parse tree highest precedence operator is always at lower level than lower precedence.
- It grow left side if operator is left associative & grow right if it is right associative
- Lets rewrite unambiguous grammar

Operator	Associativity	Variable	Grammar
+,-	Left	E	E→E+F E-F F
*	Left	F	F→F*G G
^	Right	G	G→H^G H
(),id		Н	H→(E) id

- S→S@W|W
- W→W#Y|Y
- Y→Y\$A|A
- A→B%A|A&B|id
- Sol:@<#<\$<%,&,id
- Left associative @,#\$,&
- Right associative %
- GATE2000-21, ISRO2015-24: Given the following expression grammar:
- $E \rightarrow E * F | F + E | F$
- $F \rightarrow F F \mid id$
- which of the following is true?
- (A) * has higher precedence than +
- (B) has higher precedence than *
- (C) + and have same precedence
- (D) + has higher precedence than *
- Ans: (B) has higher precedence than *

<u>Recursive Grammar</u>: If at least one production contain same variable both at $\mathbb{T}HS^{and}$.com/ RHS. Ex:S $\rightarrow aSb \in$

- Non Recursive Grammar : If no Production contain same variable both at LHS and RHS
- Ex:S \rightarrow aA|b,A \rightarrow a
- Non Recursive →Finite Language
- Recursive →Infinite Language
- Types of Recursion:
- <u>1.Left Recursion</u>
- The Grammar is said to be left recursive if left most variable of RHS is same as variable of LHS.
- Ex:A→Aa|b
- <u>2.Right Recursion</u>
- The Grammar is said to be right recursive if the right most variable of RHS is same as variable of LHS.
- Ex: $A \rightarrow aA|b$
- <u>3.General Recursion</u>
- The Grammar is said to be general recursive if it is neither left nor right recursive . Ex :A→aAb|b

https://monalisacs.co If the grammar is left recursive then parser may goes to infinite loop. To avoid looping we need to convert left recursive grammar to right recursive grammar. **Conversion of LRG→RRG:** $1.A \rightarrow A\alpha/\beta$ $\Rightarrow A \rightarrow \beta A'$ $\Rightarrow A' \rightarrow \alpha A' \in$ $\beta \alpha^*$ $2.A \rightarrow A\alpha_1 / A\alpha_2 | \dots A\alpha_n / \beta$ $\Rightarrow A \rightarrow \beta A'$ $\Rightarrow A' \rightarrow \alpha_1 A' / \alpha_2 A' | \dots \alpha_n A' / \in$ $\Rightarrow A \rightarrow \beta_1 A' / \beta_2 A' | \dots \beta_n A'$ $3.A \rightarrow A\alpha / \beta_1 / \beta_2 | \dots \beta_n$ $\Rightarrow A' \rightarrow \alpha A' \in$ $\Rightarrow A \rightarrow \beta_1 A' / \beta_2 A' | \dots \beta_n A'$ $4.A \rightarrow A\alpha_1 / A\alpha_2 | ... A\alpha_n / \beta_1 / \beta_2 | ... \beta_n$ $\Rightarrow A' \rightarrow \alpha_1 A' / \alpha_2 A' | \dots \alpha_n A' / \in$ $\Rightarrow A \rightarrow cA'$ Ex 1:A \rightarrow Aab|c $\Rightarrow A' \rightarrow ab A' \in$ \Rightarrow S \rightarrow aS'|bSS' Ex 2:S→SaS|bS|a \Rightarrow S' \rightarrow aS S'| \in Ex $3:E \rightarrow E + E | E^*E | (E) | id$ $\Rightarrow E \rightarrow idE'|(E)E'$ $\Rightarrow E' \rightarrow +EE' | *EE' | \in$ https://www.youtube.com/@MonalisaCS

Grammar with common prefix:

- If more than one production start with same sequence of grammar symbol then the grammar is called as Grammar with common prefix.
- Ex:A→aAa|aAb|∈
- Left Factoring:
- Left factoring is a grammar transformation that is useful for top-down parsing.
- The process of removing common prefix or eliminating nondeterminism is called as left factoring.
- $A \rightarrow \alpha \beta_1 | \alpha \beta_2 | \alpha \beta_3$
- Ex 1:A \rightarrow ab|ac|ad|ae
- Ex 2:E \rightarrow E+E|E*E|(E)|id
- Ex $3:S \rightarrow SaSbS/SbSaS/E$

 $\Rightarrow A \rightarrow \alpha A'$ $\Rightarrow A' \rightarrow \beta_1 |\beta_2|\beta_3$ $\Rightarrow A \rightarrow aB$ $\Rightarrow B \rightarrow b|c|d|e$ $\Rightarrow E \rightarrow EE'|(E)|id$ $\Rightarrow E' \rightarrow +E|*E$ $\Rightarrow S \rightarrow SS'|\in$ $\Rightarrow S' \rightarrow aSbS|bSaS$

- The grammar with both left & right recursive is always ambiguous.
- Left factoring will not remove ambiguity.

Classification of Parser

-) Top down parser
- 2) Bottom up parser
- Top down Parser:
- The process of constructing parse tree starting with root & going upto the leaves or children is called top down parsing.
- Top down parser simulate left most derivation.
- It takes the grammar which is free from ambiguity, left recursion & common prefix.
- Top down parser is very slow . Average time complexity $O(n^3)$,n=number of token.
- <u>Types of top-down parsing :</u>
- 1) Recursive descent parsing/Bruteforce Technique [with backtracking]
- 2) Predictive parsing(LL1) [without backtracking]
- Recursive descent parsing:
- This parsing method may involve backtracking, that is, making repeated scans of the input.
- Backtracking is costly. Debugging is very difficult.

- Ex: Consider the grammar $S \rightarrow cAd$
 - $S \rightarrow cAd$ $A \rightarrow ab|a$ c A d c A d c Aa b a b a

- input string w=cad.
- <u>Step1</u>:Initially create a tree with single node labeled S. An input pointer points to 'c', the first symbol of w.
- <u>Step2</u>: The leftmost leaf 'c' matches the first symbol of w, so advance the input pointer to the second symbol of w 'a' and consider the next leaf 'A'.
- Expand A using the first alternative.
- <u>Step3</u>: The second symbol 'a' of w also matches with second leaf of tree. So advance the input pointer to third symbol of w 'd'.
- But the third leaf of tree is 'b' which does not match with the input symbol 'd' Hence discard the chosen production and reset the pointer to second position.
- This is called **backtracking**.
- <u>Step4</u>: Now try the second alternative for A .
- If matching doesn't occur then match with alternative.
 - If it match at least one alternative then parsing is successful else fail

\$

Predictive parsing:

- No backtracking.
- Grammar must be free from ambiguity, left recursion & common prefix.
- LL(1) Parser:
- The first "L" : scanning the input from left to right, the second "L":producing a leftmost derivation, and the "1" :using one input symbol of look ahead at each step to make parsing action decisions.
- The current parsing symbol is called look ahead symbol.
- Block Diagram of LL(1) Parser:
- LL(1) parser consist of 3 component
- 1) Input Buffer
- 2) Parse stack
- 3) Parse table
- **LL(1) Grammar:**
- The grammar for which LL(1) parser can be constructed is called LL(1) grammar.
- The grammar is LL(1) if its parse table is free from multiple entries.
- **Function used to construct LL(1) parse table**
- 1.FIRST(X), 2.FOLLOW(A) $[X \in V + T, A \in V]$

LL(1) Parser

Parsing table

 \leftarrow

\$

Stack

FIRST(X):

- FIRST (x) is set of all terminals that may begin any sentential form or production.
- The first terminal which can be derived from a variable in process of derivation.
- Rules for FIRST():
- 1) If X is terminal, then FIRST(X) is $\{X\}$.
- 2) If $X \rightarrow \varepsilon$ is a production, then add ε to FIRST(X).
- 3) If X is non-terminal and $X \rightarrow a\alpha$ is a production then add a to FIRST(X).
- If X is non-terminal and X → Y1 Y2...Yk is a production, then place a in FIRST (X) if for some i, a is in FIRST(Yi), and ε is in all of FIRST(Y1),..., FIRST(Yi-1); that is, Y1,...Yi-1 => ε.If ε is in FIRST(Yj) for all j=1,2,...,k, then add ε to FIRST(X).
- 5) If $X \to Y$ & both are non-terminal then FIRST(X)=FIRST(Y).
- ≻ Ex 1:A $\rightarrow a|b| \in$
- FIRST(A)= $\{a,b,\in\}$
- > Ex 2:S→aSb|bSa|∈
 FIRST(S)={a,b,∈}

- ≻ Ex $3:S \rightarrow aA|bB$
- $\rightarrow A \rightarrow aA|b$
- > B → b | ∈
- FIRST(S) ={a,b}
- FIRST(A)= $\{a,b\}$
- FIRST(B)={b,∈}

- $FIRST(E) = \{e, \in\}$
- $FIRST(D) = \{d\}$
- $FIRST(B) = \{b, \in\}$ $FIRST(C) = \{c, \in\}$
- $FIRST(A) = \{a, \in\}$
- $FIRST(S) = \{a, b, c, d\}$
- $\succ E \rightarrow e \in$
- $\succ C \rightarrow c \in$ $\geq D \rightarrow d$
- > B \rightarrow b| \in
- $> A \rightarrow a \in$
- Ex 7:S \rightarrow ABCDE
- $FIRST(A) = \{b, \in\}$

Ex 4:S→Aa

- $FIRST(S) = \{a, b\}$

- $> A \rightarrow b | \in$
- $> A \rightarrow a \mid \in$
- \succ Ex 5:S \rightarrow AB

 $FIRST(T) = \{(,id\}\}$ $FIRST(T') = \{*, \in\}$

 $FIRST(F) = \{(,id)\}$

- $FIRST(E') = \{+, \in\}$
- \succ FIRST(E) = {(,id}
- \succ F \rightarrow (E)|id
- \succ T' $\rightarrow *FT' \in$
- \succ T \rightarrow FT'
- \succ E' \rightarrow +TE' | \in
- \succ Ex 8:E \rightarrow TE'
- $FIRST(B) = \{b,c\}$
- $FIRST(A) = \{a, \in\}$

- $FIRST(S) = \{a,b,c\}$
- $> B \rightarrow b|c|$
- $> A \rightarrow aA | \in$

> B \rightarrow bB| \in

 \succ Ex 6:S \rightarrow AB

 $FIRST(S) = \{a, b, \in\}$

 $FIRST(A) = \{a, \in\}$

 $FIRST(B) = \{b, \in\}$

FOLLOW(A):

- A terminal which can follow a variable during process of derivation.
- FOLLOW(A) is the set of all terminals that may followed to the right of A in any production or any sentential form.
- Rules for FOLLOW():
- 1) If S is a start symbol, then FOLLOW(S) contains \$.
- 2) If there is a production $A \rightarrow \alpha B\beta$, then everything in FIRST(β) except ϵ is placed in FOLLOW(B).
- 3) If there is a production $A \rightarrow \alpha B\beta$ where FIRST(β) contains ε , then FOLLOW(B)= FOLLOW(A) \cup FIRST(β)- ε .
- 4) If $S \rightarrow \alpha A$ or $S \rightarrow A$ then FOLLOW(A)= FOLLOW(S)
- ≻ Ex-1:A \rightarrow a|∈
 - FOLLOW(A)={\$}

 \succ Ex-2:A \rightarrow A(A)| \in

- > Ex-3:S →aA
- → $A \rightarrow aAb|Sa| \in$
- FOLLOW(S)={\$,a}
- FOLLOW(A)= $\{\$,(,)\}$ FOLLOW(A)= $\{\$,a,b\}$

$FOLLOW(E) = \{\$\}$

- $FOLLOW(D) = \{e, \$\}$
- $FOLLOW(C) = \{d\}$
- FOLLOW(B)= $\{c,d\}$
- FOLLOW(A)={b,c,d}
- $FOLLOW(S) = \{\}\}$
- $\succ E \rightarrow e \in$
- $\geq D \rightarrow d$
- \geq B \rightarrow b \in $\succ C \rightarrow c \in$
- S→ABCDE $\succ A \rightarrow a \in$
- Ex-6: >
- FOLLOW(B) = $\{$
- $FOLLOW(S) = \{\$\}$ $FOLLOW(A) = \{a, b, c\}$
- B→bB|a

- $A \rightarrow aAc \in$
- $S \rightarrow aAB$

Ex-4:

- ≻ Ex-5:
 - \succ S \rightarrow AB
 - A→aAl∈
- \geq B \rightarrow bB| \in

 $\succ E \rightarrow TE'$

> T-FT

 $\succ E' \rightarrow + TE' \in$

T′→*FT′l∈

 $F \rightarrow (E) | id$

- $FOLLOW(S) = \{\$\}$
- $FOLLOW(A) = \{b, \}\}$

- - $FOLLOW(B) = \{\$\}$
 - ≻ Ex-7:

 $FOLLOW(T') = \{+, \}$ $FOLLOW(F) = \{*, +, \}$

 $FOLLOW(T) = \{+, \}$

FOLLOW(E) = $\{$), \$

 $FOLLOW(E') = \{\}, \}$

Construction of	prec	lictive /	LL(1) Pars	e Ta	ble:			https://mc	onalisacs.com/
• For each product	For each production $A \rightarrow \alpha$ of the grammar, do the following:								
1) For each termin	nal a	in FIRS	$\Gamma(A)$ add A	$\rightarrow \alpha$	to N	I[A,a].			
If \in is in FIRST(A), then for each terminal b in FOLLOW(A), add A $\rightarrow \alpha$ to M[A,b].									
If \in is in FIRS'	T(A)	and \$ is	in FOLLOV	W(A),add	$d A \rightarrow \alpha t c$	M[A,\$]	as well.	
• The grammar G	is LĹ	(1) if pr	edictive para	se ta	ble i	s free fron	n multiple	e entries	•
• Ex-1: $A \rightarrow aA b $					$\overline{)}$	a	b	\$	
		FIRST	FOLLOW	0			~ 	+	
	А	a,b	\$	S	F A	$A \rightarrow aA$	$A \rightarrow b$		
• Ex-2:		FIRST	FOLLOW			a	b	\$	
• S→aA Bb	S	a,b	\$		S	S→aA	S→Bb		
• $A \rightarrow aA b$	А	a,b	\$		А	A→aA	A→b		
	В	b,∈	b		В		B→bB B→⊂		
• Since there are n	nore t	han one	production,				$\mathbf{D} \rightarrow \mathbf{C}$		

the grammar is not LL(1) grammar.

• All \in production should be placed FOLLOW of LHS variable.

• Ex-3: • $S \rightarrow Aa bB$ • $A \rightarrow aA c$ • $B \rightarrow bB \in$	S A	FIRST a,b,c a,c	FOLLOW \$ a	S A	$\begin{array}{c} \mathbf{a} \\ \mathbf{S} \rightarrow \mathbf{A} \mathbf{a} \\ \mathbf{A} \rightarrow \mathbf{a} \mathbf{A} \end{array}$	b S→bB	$c^{https://}$ $S \rightarrow Aa$ $A \rightarrow c$	monalisacs.com
	B	b, ∈	\$	В		B →bB		$B \rightarrow \in$
• Ex-4: • S		FIRST	FOLLOW	0	a	b	d	\$
• $A \rightarrow aA Bb d$	S	a,b,d	\$,a,b,d	S	S→Aa	S→bB	S→Aa	
• $B \rightarrow SB b$	A	a,b,d	а			S→Aa		
·	В	a,b,d	b,a,d,\$	А				
		•	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	В				

If any terminal is repeated in FIRST(A) then the grammar is not LL(1)
Ex-5: S→(S)| ∈

	FIRST	FOLLOW		()	\$
S	(, Є	\$,)	S	S→(S)	S→∈	S→∈

•	Ex-6:				id	()	+
•	$E \rightarrow T$	Έ΄,		E	E→TE′	E→TE′		
•	$E' \rightarrow -$	⊦TE′ €		E'			E′→€	$E' \rightarrow +TE'$
	$T \rightarrow F$ $T' \rightarrow *$	T ≰FT′l∈		Т	T→FT′	T→FT′		
•	$F \rightarrow (I$	E) id		Τ′			T′→∈	T′→∈
	``````````````````````````````````````			F	F→id	F→(E)		
		FIRST	FOLLOW					
	E	(,id	),\$		0			
	E'	+, ∈	),\$			0		
	Т	(,id	+,),\$		<i>V</i> O <i>,</i>			
	Τ'	*, ∈	+,),\$		$\phi$ ,			
	F	(,id	+,*,),\$		*			

https://monalisacs.com/

E′→€

T′→∈

*

 $|T' \rightarrow *FT'|$ 

- Short Cut method for testing LL(1) Grammar:
- 1.If the grammar is free from  $\in$  production & for every production of the form  $A \rightarrow \alpha_1 / \alpha_2 / \alpha_3 | \dots \alpha_n$  the set FIRST $(\alpha_1) \cap$  FIRST $(\alpha_2) \dots$  FIRST $(\alpha_n) = \emptyset$  then grammar is LL(1).
- Ex-4
- $S \rightarrow Aa|bB$
- $A \rightarrow aA|Bb|d$
- $B \rightarrow SB|b$
- 2.If the grammar contain ∈ production & for every production of the form A→ α₁/α₂/α₃|....α_n the set FIRST(α₁)∩ FIRST(α₂)..... FIRST(α_n) =Ø & for every production A→ α/ ∈ then FIRST(α)∩FOLLOW(A) =Ø then grammar is LL(1).
  Ex-2
- $S \rightarrow aA|Bb$
- $A \rightarrow aA|b$
- B →bB|∈
- 3.Every ambiguous grammar is not LL(1).
- 4.Every left recursive grammar is not LL(1).
- 5. Every grammar having common prefix is not LL(1).

https://monalisacs.com

• Ex-1:A  $\rightarrow$ ab|bc|d

- Ex-2:A  $\rightarrow$  ab|ac|d
- Ex-3:S →aSb |∈
- $Ex-4:S \rightarrow aSb|bSa| \in$
- Ex-5: S  $\rightarrow$  aA |BbA
  - $A \rightarrow aA|b$
  - $B \rightarrow bB| \in$
- Ex-6:  $S \rightarrow Aa|bB$ 
  - A →bA|dB|∈
  - B →aBb|d
- Ex-7: S  $\rightarrow$ aSbS|bSaS|  $\in$
- Ex-8:  $S \rightarrow aABb$ 
  - $A \rightarrow c \in$
  - $B \rightarrow d \in$

- $Ex-1:\{a\} \cap \{b\} \cap \{d\} LL(1)$
- Ex-2: $\{a\} \cap \{a\} \cap \{d\}$  not LL(1)
- $Ex-3:\{a\} \cap \{\$,b\} LL(1)$
- Ex-4:{a}  $\cap$  {b}  $\cap$  {a,b,\$}not LL(1)
- Ex-5:{a}∩{b}
- {a}∩{b}
- {b}∩{b} Not LL(1)
- Ex-6: $\{a,b,d\} \cap \{b\}$  not LL(1)
- $Ex-7:\{a\} \cap \{b\} \cap \{a,b,\} \text{ not } LL(1)$
- Ex-8:
- $\{c\} \cap \{d,b\}$
- $\{d\} \cap \{b\} LL(1)$

https://monalisacs.com



- Compare the topmost symbol of stack to look ahead symbol.
- 2) If matching occurs ( $x=a\neq$ \$) then pop off & increment the input pointer 3)
- If matching doesn't occur (x  $\neq$  a  $\neq$ \$) then perform the push operation again compare 4) the top of the stack with look ahead symbol.

https://monalisacs.com

isaC

- After reading the complete string if the stack is empty(x=a=\$) then parsing is successful.
- x= top of stack symbol,a=current input symbol,\$=end marker.

Ex-1:S-	→(S)  ∈	,w=(())

						``		1
Stack	i/p string	Action			(	)	\$	
\$	(())\$	Push(S)	<u></u>	S	$S \rightarrow (S)$	$S \rightarrow \in$	S→∈	
\$S	(())\$	$Push(S \rightarrow ($	(S))					-
\$)S(	(())\$	Pop						
\$)S	())\$	Push(S→(	(S))					
\$))S(	())\$	Pop						
\$))S	))\$	Push(S→€	Ξ)					
\$))	))\$	Pop	-					
\$)	)\$	Pop						
\$	\$	accept	-	¢	<u>,                                    </u>			
Number o	of different push op	peration=3		3		https://www.	youtube.com/@	Mona

(	Ex-2:				a	b	\$ https://monalisacs.com
•	$S \rightarrow AA$			C			
•	$A \rightarrow aA b$			3	$S \rightarrow AA$	$S \rightarrow AA$	
•	W=abab			A	A→aA	A→b	
	Stack	i/p string	Action				I
	\$	abab\$	Push(S)		Co		
	\$S	abab\$	Push(S → AA	.)	$\mathbf{C}$		
	\$AA	abab\$	$Push(A \rightarrow aA)$	)		_	
	\$AAa	abab\$	Pop		$\mathbf{b}$		
	\$AA	bab\$	$Push(A \rightarrow b)$	:5			
	\$Ab	bab\$	Pop 👩				
	\$A	ab\$	Push(A →aA	)			
	\$Aa	ab\$	Pop			_	
	\$A	b\$	$Push(A \rightarrow b)$		\$		
	\$b	b\$	Pop				
	\$	\$	Accept				
	Number of	different push o	peration $=4$				

- Minimum number of distinct push operation=n[without ∈ production]
- n=number of tokens
- In case of  $\in$  Minimum number of distinct push operation= n-1

## **Bottom up Parser:**

- Constructing a parse tree for an input string beginning at the leaves and going towards the root is called bottom-up parsing.
- Ex:  $E \rightarrow E + T | T, T \rightarrow T * F | F, F \rightarrow (E) | id$
- W=id*id
- A general type of bottom-up parser is a shift-reduce parser.
- The class of grammars for which shift-reduce parsers can be built, the LR grammars.
- Bottom up parser simulates reverse of right most derivation.
- Bottom up parser is more powerful than top down parser.
- Average time complexity  $O(n^3)$ , n=number of token.
- Bottom up parser takes unambiguous grammar for LR parsing.
- Reductions :
- Bottom-up parsing as the process of "reducing" a string w to the start symbol of grammar.
- At each reduction step, a specific substring matching the body of a production is replaced by the non terminal at the head of that production.
- Ex:A sequence of reductions id*id, F*id, T*id, T*F, T, E.
- A reduction is the reverse of a step in a derivation.

# Handle Pruning:

- A handle of a string is a substring that matches the right side of a production, and whose reduction to the non-terminal on the left side of the production is possible.
- The process of finding & reducing the handle is called as **handle pruning**.



# **Shift-Reduce Parsing:**

- Shift-reduce parsing is a form of bottom-up parsing in which a stack holds grammar symbols and an input buffer holds the rest of the string to be parsed.
- We use \$ to mark the bottom of the stack and also the right end of the input.
- During a left-to-right scan of the input string, the parser shifts zero or more input symbols onto the stack, until it is ready to reduce a string of grammar symbols on top of the stack.
- It then reduces to the head of the appropriate production.
- The parser repeats this cycle until it has detected an error or until the stack contains the start symbol and the input is empty
- There are four possible actions a shift-reduce parser: (1) shift, (2) reduce, (3) accept, (4) reject
- Shift: Shift the next input symbol onto the top of the stack.
- Reduce: The parser replaces the handle within a stack with a variable.
- Accept: At the end of parsing if the stack contains only the start symbol then the string is accepted and parsing is successful.

Reject: At the end of parsing if the stack contains anything other than start symbol com then the string is reject and parsing is unsuccessful.

Ex-1:	Stack	i/p string	Action	
$S \rightarrow AA$	\$	abab\$	Shift	
• $A \rightarrow aA b$	\$a	bab\$	Shift	
• W=abab	\$ab	ab\$	Reduce( $A \rightarrow b$ )	
	\$aA	ab\$	Reduce(A→aA)	
	\$A	ab\$	Shift	
	\$Aa	<b>b</b> \$	Shift	
	\$Aab	\$	Reduce( $A \rightarrow b$ )	
	\$AaA	\$	$Reduce(A \rightarrow aA)$	\$
	\$AA	\$	$\bigvee \text{Reduce}(S \rightarrow AA)$	
	\$S		Accept	

- Number of different reduce operation =3
- Maximum number of reduce moves that can be taken by Shift reduce parser / bottom up parser for a grammar with no  $\in$  and unit production to parse a string of n token is n-1.
- |abab|=4
- Number of reduce operation =4-1=3



- Number of different reduce operation =4
- Maximum number of reduce moves =n-1 [without unit,  $\in$  production]
- $| id_1 * id_2 |= 3 1 = 2$
- In case of unit production n-1+number of unit production.
- $2+2[E \rightarrow T, T \rightarrow F]=4$

Conflict	s During S	hift-Reduce Pars	sing				h	ttps://monalisacs.com/
1. Shift-i	reduce conj	<i>flict</i> : The parser can be reader to $F = F + F + F + F + F + F + F + F + F + $	innot de	ecide whet	ther to	o shift or	to reduce	2.
Stack	i/p string	$E \rightarrow E + E \mid E^*E \mid 10$ Action	,input	:10+10*10 Stack	i/p s	tring	Action	
\$E+E	*id\$	Reduce $E \rightarrow E^+$	E	§E+E	*id\$		Shift	
\$E	*id\$	Shift	9	E+E*	id\$		Shift	
\$E*	id\$	Shift	9	E+E*id	\$		Reduce	E→id
\$E*id	\$	Reduce $E \rightarrow id$	9	E+E*E	\$		Reduce	E→E*E
\$E*E	\$	Reduce $E \rightarrow E^*$	E S	SE+E	\$		Reduce	$E \rightarrow E + E$
\$E	\$	Accept	•	E	\$		Accept	
2.Reduc	e-reduce c	onflict: The parse	er cann	ot decide	whic	h of seve	eral redu	ctions to
make. C	onsider gra	ammar: $M \rightarrow R+R$	R+c,	$R \rightarrow c, inp$	out :c-	+c		
Stack	i/p string	Action	Stack	i/p str	ing	Action		
\$	c+c\$	Shift	\$	c+c\$		Shift		
\$c	+c\$	Reduce $R \rightarrow c$	\$c	+c\$		Reduce l	R→c	
\$R	+c\$	Shift	\$R	+c\$		Shift		
\$R+	c\$	Shift	\$R+	c\$		Shift		
\$R+c	\$	Reduce $R \rightarrow c$	\$R+c	\$		Reduce N	$M \rightarrow R+c$	
\$R+R	\$	Reduce $M \rightarrow R+R$	<b>\$M</b>	\$		Accept		
\$M	\$	Accept				- ht	ttps://www.youtu	be.com/@MonalisaCS

- **Classification of bottom up parser**
- ) Operator Precedency parser
- ) LR Parser
  - LR(0) item: LR(0), SLR(1)
  - LR(1) item: CLR(1),LALR(1)
- Operator-precedence parsing
- An efficient way of constructing shift-reduce parser is called operator precedence parsing .
- Operator-grammar: These grammars have the property that no production on right side is  $\varepsilon$  or has two adjacent non terminals.
- Example: Consider the grammar:  $\mathbf{E} \rightarrow \mathbf{EAE} \mid (\mathbf{E}) \mid -\mathbf{E} \mid \mathbf{id}$

$$\mathbf{A} \rightarrow + | \mathbf{-} | * | / | ^{\wedge}$$

- The right side EAE has three consecutive non-terminals, so not operator grammar.
- The grammar can be written as follows:
- $\mathbf{E} \rightarrow \mathbf{E} + \mathbf{E} \mid \mathbf{E} \mathbf{E} \mid \mathbf{E}^* \mathbf{E} \mid \mathbf{E} / \mathbf{E} \mid \mathbf{E}^* \mathbf{E} \mid -\mathbf{E} \mid \mathbf{id}$
- Operator grammar can be ambiguous or unambiguous.

- In operator grammar every terminal is operator.
- Only terminal are used for operator precedency grammar
- Operator grammar work on precedency & associativity property.
- Operator precedence grammar :the operator grammar for which an operator precedency parser can be constructed is called operator grammar.
- Operator precedence relations:
- There are three precedence relations namely  $< , \neq$  , .>
- 1) a < . b : a yields precedence to b.b reduce before a.
  - ) a = b : a has the same precedence as b. reduce according to associativity.
  - a. > b :a takes precedence over b.a reduce before b.
- Rules for constructing precedence parse table:
- Let  $\theta_1 \& \theta_2$  be two operations.
- 1) If  $\theta_1$  has higher precedence than  $\theta_2$ , then make  $\theta_1 > \theta_2$  and  $\theta_2 < \theta_1$ .
- 2) If  $\theta_1$  and  $\theta_2$ , are of equal precedence, then make  $\theta_1 > \theta_2$  and  $\theta_2 > \theta_1$  if operators are left associative,  $\theta_1 < \theta_2$  and  $\theta_2 < \theta_1$  if right associative.
- 'id' > '^' is right-associative > '*', '/' left-associative and
  - > '+' ,'-' left-associative >\$

#### **Operator precedence parsing algorithm:**

- Let a is the top of stack & b is the look ahead symbol.
- 1) If a < b, or a = b then shift b onto the stack; advance ip to the next input symbol;
- Else if a . > b then /*reduce*/ repeat {pop the stack until the top stack terminal is related by <.to the terminal most recently popped}
- 3) If a=b=\$ parsing successful.
- Stack implementation of operator precedence parsing:
- Operator precedence parsing uses a stack and precedence relation table for its implementation of above algorithm.
- The initial configuration of an operator precedence parsing is stack \$ ,input w \$
- Advantages of operator precedence parsing:
  - It is easy to implement.

1)

- 2) Once an operator precedence relation is made between all pairs of terminals of a grammar ,the grammar can be ignored.
- Disadvantages of operator precedence parsing:
- 1) It is hard to handle tokens like the minus sign (-) which has two different precedence.
  - ) Only a small grammar can be parsed using operator-precedence parser.

	Conside	er Grammar:				+	-	*	1	^	id	ttps://m	onalisad	s.com/
•	$E \rightarrow E^{-1}$	-E   E-E   E*I	E   <b>E/E   E^</b>	E   (E)   id	+	.>	.>	<.	٢.	٢.	٢.	<.	.>	.>
•	Input st	ring : id + id *	ⁱ id		•	.~	~	~	~•	~•	~•	~	•~	•~
	Stack	i/p string	Action		-	•_•	•_	<b>`</b> •	<b>`</b> •	<b>~•</b>	<b>`</b> •	<b>`</b> •	•_	•_•
	\$	<. id+id*id\$	Shift		*	.>	.>	.>	.>	<.	<.	<.	.>	.>
	\$id	.>+id*id\$	Pop		1	.>	.>	.>	.>	<.	<.	<.	.>	.>
	\$	<. +id*id\$	Shift	0	~	.>	.>	.>	.>	<.	<.	<.	.>	.>
	\$+	<. id*id\$	Shift		id								~	
	\$+id	.>*id\$	Рор		í	•_	•_	•_	•_	•_			•_	•_
	\$+	<. *id\$	Shift		(	<.	<.	<.	<.	<.	<.	<.	=	
	\$+*	<. id\$	Shift		)	.>	.>	.>	.>	.>			.>	.>
	\$+*id	.>\$	Pop		\$	<.	<.	<.	<.	<.	<.	<.		
	\$+*	.>\$	Рор											
	\$+	.>\$	Pop	\$										
	\$	\$	Accept											

#### **Introduction to LR Parsing:**

- An efficient bottom-up syntax analysis technique that can be used to parse a large class of CFG is called LR(k) parsing.
- The 'L' is for **left-to-right** scanning of the input, the 'R' for constructing **a rightmost derivation in reverse**, and the 'k' for the number of input symbols .
- Advantages of LR parsing:
- It recognizes all programming language constructs for which CFG can be written.
- It is an efficient non-backtracking shift-reduce parsing method.
- It detects a syntactic error as soon as possible.
- A grammar that can be parsed using LR method is a proper superset of a grammar that can be parsed with predictive/LL(1) parser.
- Drawbacks of LR method:
- It is too much of work to construct a LR parser by hand for a programming language grammar. A specialized tool, called a LR parser generator, is needed. Example: YACC.
- Types of LR parsing method:
- LR(0),SLR(1)- Simple LR ,Easiest to implement, least powerful.
- CLR(1)- Canonical LR ,Most powerful, most expensive.
- LALR(1)- Look-Ahead LR
- Intermediate in size and cost between SLR & CLR.

#### **Construct LR Parse Table:**

- . Obtain the augmented grammar.
- 2. Construct the canonical collection of LR items.
- 3. Draw the LR Automata.
- 4. Construct the parse table from LR Automata.
- Augmented grammar:
- If G is a grammar with start symbol S, then G', the *augmented grammar* for G, is G with a new start symbol S' and production  $S' \rightarrow S$ .
- The grammar which is obtained by adding 1 more production before start symbol is called as augmented grammar.
  - LR(0) item:
  - An LR parser makes shift-reduce decisions by maintaining states to keep track of where we are in a parse.
  - An LR(0) item of a grammar G is a production of G with a dot at some position of the body of RHS.
  - $A \rightarrow XYZ$
- LR(0) items  $A \rightarrow XYZ$ ,  $A \rightarrow XYZ$ ,  $A \rightarrow XYZ$ ,  $A \rightarrow XYZ$ .
  - A  $\rightarrow$ X.YZ indicates that we have just seen on the input a string derivable from X and next to see a string derivable from YZ.
- Item A →XYZ. indicates that we have seen the body XYZ and that it may be time to reduce XYZ to A.

- The production  $A \rightarrow \in$  generate only one item ,  $A \rightarrow$ . Function used to generate LR(0) item
  - Closure(I) [I set of items]
- Goto(I,x) [x grammar symbol]
- **Closure of item sets**
- If I is a set of items for a grammar G, then CLOSURE(I) is the set of items constructed from I by two rules:
- Initially, add every item in I to  $CLOSURE(I).I_0 = CLOSURE(S' \rightarrow .S)$ 1)
- If  $A \rightarrow \alpha . B\beta$  is in CLOSURE(I) and  $B \rightarrow \gamma$  is a production, then add the item  $B \rightarrow . \gamma$  to 2) CLOSURE(I), if it is not already there . apply this rule until no more new items can be added to CLOSURE(I).
- Goto (I,x)
- Goto (A→ α.xβ,x)= (A→ αx.β)
  Structure of the LR Parsing Table:
- The parsing table consist of two functions: 1.ACTION, 2.GOTO.
- ACTION function takes as argument a state I and a terminal or \$.
- ACTION part contains shift & reduce of terminal.
- If x is a terminal & goto  $(I,x) = I_j$  then place  $S_j$  in ACTION. If parser accepts the input and finishes parsing ,then place **acc** in \$
- column of ACTION part.

- If the set I contain a final item then place  $r_i$  under all the terminal in ACTION part.  $T_i^{\text{menalisacs.com/}}$  reduce by the production numbered i.
- GOTO function takes as argument a state I and a non terminal and contains only shift operation of non terminal.
- If x is a non terminal & goto  $(I,x) = I_j$  then place j in GOTO.

h

- LR(0) grammar:
- The grammar G is said to LR(0) if its parse table is free from multiple entries.
- Ex 1:  $A \rightarrow aA|b$

 $A' \rightarrow A.$ 

• augmented grammar  $A' \rightarrow A$ •  $A \rightarrow aA|b$ 

 $\begin{array}{c}
A' \rightarrow .A \\
A \rightarrow .aA \\
A \rightarrow .b
\end{array}$ 

h

 $A \rightarrow b.$ 

<b>1</b>					<b></b>
т	(	AC	TION	GOTO	
$\frac{\mathbf{I}_4}{\mathbf{A} \mathbf{A} \mathbf{A}}$	S	a	b	\$	Α
$A \rightarrow aA.$	0	$S_2$	S ₃		1
A	1			Acc	
a A a	2	<b>S</b> ₂	<b>S</b> ₃		4
b	3	r ₂	r ₂	r ₂	
	4	r ₁	r ₁	r ₁	

• LR(0) Grammar

• Ex 2: S $\rightarrow$ AA • A $\rightarrow$ aA • A $\rightarrow$ b • S $\rightarrow$ AA • A $\rightarrow$ b • S $\rightarrow$ AA • A $\rightarrow$ aA • A $\rightarrow$ b					gmente → S →AA →aA →b	ed grammar $S' \rightarrow S.$ $I_1$ $S$ $a$ $A \rightarrow aA.$ $A \rightarrow A I_6$
ACTION GOTO					ОТО	$I_2 \begin{bmatrix} S \to A.A \\ A \to aA \end{bmatrix} \begin{bmatrix} S' \to .S \\ S \to AA \end{bmatrix} \xrightarrow{a} \begin{bmatrix} A \to aA \\ A \to .aA \end{bmatrix} a$
	a	b	\$	S	Α	$ \begin{array}{c c} A \rightarrow .aA \\ A \rightarrow .b \end{array} \begin{array}{c} B \rightarrow .iAA \\ A \rightarrow .aA \end{array} \begin{array}{c} A \rightarrow .b \end{array} $
0	S ₃	$S_4$		1	2	$\begin{array}{c c} A \rightarrow b & \mathbf{l}_{3} \\ \hline \mathbf{I} & \mathbf{b} & \mathbf{b} \\ \hline \mathbf{I} & \mathbf{I} \\ \hline \mathbf{I} & $
1			Acc			$S \rightarrow AA.$ $b \rightarrow b.$
2	<b>S</b> ₃	$S_4$			5	$I_{4}$
3	<b>S</b> ₃	S ₄			6	
4	r ₃	r ₃	r ₃			
5	$\mathbf{r}_1$	r ₁	r ₁			
6	r ₂	r ₂	r ₂			
• I	LR(0)	Gram	nar			https://www.voutube.com/@MopalicaCS





# LR-parsing algorithm:

- Initially, the parser has 0 on its stack, where 0 is the initial state, and w\$ in the input buffer
- let a be the first symbol of w\$;
- while(1)
- {let **s** be the state on top of the stack;
- if (ACTION[s, a] = shift t) {
  - push t onto the stack; }
- else if (ACTION[s, a] = reduce (A→β){
  pop β symbols off the stack;
  let state t be on top of the stack;
  push GOTO[t, A] onto the stack;}
  else if (ACTION[s, a] = accept ) break;
- else call error-recovery routine;

	S	tack	K S	Syn	ıbo	ls	i/J	o st	ring	https://monalisacs.com				
	0			\$			id*id\$			Shift to 4				
	04 03 02 026			\$id \$F \$T \$ <b>T</b> *			*i	d\$		Reduce $F \rightarrow id$				
							*id\$ *id\$ id\$			Reduce $T \rightarrow F$				
										Shift to 6				
										Shift to 4				
	0264			\$T*id			\$			Reduce $F \rightarrow id$				
	0268		9	\$T*F			\$			Reduce $T \rightarrow T^*F$				
	02			\$T			\$			Reduce $E \rightarrow T$				
	01		S	\$E			\$			Accept				
[ _									ı					
	$\mathbf{D}$	Α	СТІО	N		(	GOT	0						
$\mathbf{C}$		id	+	*	\$	Е	Т	F	•					
	0	S ₄				1	2	3						
	1		$S_5$		Acc									
	2	r ₂	$\mathbf{r}_2$	$r_2/S_6$	r ₂									
	3	r ₄	$\mathbf{r}_4$	r ₄	$r_4$									
	4	<b>r</b> ₅	r ₅	r ₅	<b>r</b> ₅									
	5	S ₄					7	3						
	6	$S_4$						8						

7

8

 $\mathbf{r}_{3}$ 

 $r_1/S_6 r_1$ 

 $r_3$ 

 $r_3$ 

 $\mathbf{r}_1$ 

 $\mathbf{r}_{3}$ 

6	Conflicts in LR Parsing:	Stack	i/p string	Ahttp://monalisacs.com/
•	1. Shift-reduce conflict :	\$	$id_1*id_2$ \$	Shift
•	The parser cannot decide whether to shift or to re	\$id ₁	*id ₂ \$	Reduce( $F \rightarrow id$ )
•	If the same state has both shift & reduce option the	SF ©T	*1d ₂ \$ *:d \$	Reduce $(T \rightarrow F)$
•	2.Reduce-reduce conflict :	\$1 \$T*	$\operatorname{id}_2$	Shift
•	The parser cannot decide which of several reduct	\$T*id ₂	\$	Reduce( $F \rightarrow id$ )
•	If the same state contain more than one final item	\$T*F	\$	Reduce( $T \rightarrow T^*F$ )
•	The grammar is $LR(0)$ if & only if it is free from	\$1 \$F	Ф \$	Reduce( $E \rightarrow I$ )
•	Viable Prefixes:	ψL	Ψ	accept
•	The prefixes of right sentential forms that can app	ear on the s	tack of a shift	reduce parser
	are called <i>viable prefixes</i> .			
•	A viable prefix is a prefix of a right-sentential for	m that does	not continue p	ast the right
	end of the rightmost handle of that sentential form	1.	_	_

- Not all prefixes of right-sentential forms can appear on the stack.
- SLR parsing is based on the fact that LR(0) automata recognize viable prefixes
- Consider grammar :  $E \rightarrow E+T | T, T \rightarrow T^*F | F, F \rightarrow id$
- Examples of Right sentential form :  $E \Rightarrow T \Rightarrow T^*F \Rightarrow T^*id_2 \Rightarrow F^*id_2 \Rightarrow id_1^*id_2$
- Examples of viable prefix : id₁,F,T,T*,T*id₂,T*F,E

#### **SLR(1)** Parser:

- The SLR method begins with LR(0) items and LR(0) automata.
- **Constructing an SLR-parsing table.**
- **ACTION**:
- (a) If  $[A \rightarrow \alpha.a\beta]$  is in  $I_i$  and GOTO $(I_i, a) = I_i$ , then set ACTION[i,a] to "S_i"; a=terminal.
- (b) If  $[A \rightarrow \alpha]$  is in  $I_i$ , then set ACTION[i,a] to "r" for all **a** in FOLLOW(A); j is reduction number,  $A \neq S'$ .
- (c) If  $[S' \rightarrow S.]$  is in  $I_i$ , then set ACTION[i, \$] to "accept".
- If any conflicting actions result from the above rules, we say the grammar is not SLR(1).
- **GOTO**:
- The GOTO transitions for state i are constructed for all non terminals A using the rule: If  $GOTO(I_i, A) = I_j$ , then GOTO[i, A] = j. If SLR(1) parsing table is free from multiple entries then grammar called SLR
- grammar.
- We usually omit the (1) after the SLR, since we shall not deal here with parsers having more than one symbol of lookahead.
- Every SLR(1) grammar is unambiguous, but there are many unambiguous grammars that are not SLR(1).





https://monalisacs.com

# **Conflicts in SLR Parsing:**

- **1.** Shift-reduce conflict :
- If follow(B)  $\cap x = \emptyset$ , SR conflict in LR(0) but not in SLR(1).
- If follow(B)  $\cap x \neq \emptyset$  SR conflict in both LR(0) & SLR(1).
- 2.Reduce-reduce conflict :





- If follow(A)  $\cap$  follow(B) = Ø, RR conflict in LR(0) but not in SLR(1).
- If follow(A)  $\cap$  follow(B)  $\neq \emptyset$  RR conflict in both LR(0) & SLR(1)
- The grammar is SLR if & only if it is free from both SR & RR conflict.
- Ex 3:
- S →AaAb|BbBa
- $A \rightarrow \in$

$$S' \rightarrow .S$$
  
 $S \rightarrow .AaAb$   
 $S \rightarrow .BbBa$   
 $A \rightarrow .$   
 $B \rightarrow .$ 

- Follow (S)={\$} Follow (A)={a,b}
- Follow (B)= $\{a,b\}$
- Follow(A)  $\cap$  Follow(B)={a,b}  $\neq \emptyset$
- RR conflict in both LR(0) & SLR(1)
- Not LR(0) grammar.
- Not SLR(1) grammar.
- LL(1) grammar
- First(AaAb) ∩First(BbBa)=Ø



- SLR(1) is more powerful than LR(0)
- Every LR(0) grammar is SLR(1) but converse not true.
- The number of entries in LR(0) table  $\geq$  number of entries in SLR(1) table.
- Both table differ only in ACTION part not GOTO part.
- SLR(1) is more efficient than LR(0).
- CLR(1) or LR(1) parser:
- LR(1) = LR(0) + 1 Look ahead symbol
- LR(1) determines the reduction dependency on the LA symbol.
- The redundant reduction can be removed hence it is called canonical LR(1).
- LR(1) item:
- $[A \rightarrow \alpha, \beta, a], A \rightarrow \alpha \beta$  is a production,  $\beta$  is not  $\varepsilon, a$  is a terminal or right endmarker \$.
- 1 refers to the length of second component called lookahead of the item.
- The lookahead has no effect on item.
- $[A \rightarrow \alpha, a]$ , is a reduction if next input symbol is a.
- The set of a's will always be a proper subset of FOLLOW(A).

# • Constructing LR(1) Sets of Items:

- The method for building the collection of sets of valid LR(1) items is same as the one for building the canonical collection of sets of LR(0) items.
- We need only to modify the two procedures CLOSURE and GOTO.
  CLOSURE(I) {repeat void items(G') {
- for ( each item  $[A \rightarrow \alpha, B\beta, a]$  in I )
- for ( each production  $B \rightarrow \gamma$  in G' )
  - for (each terminal b in FIRST( $\beta a$ ))
    - add  $[B \rightarrow \gamma, b]$  to set I;
- until no more items are added to I;
- return I;}
- **GOTO**(**I**, **X**) {
  - for ( each item [A  $\rightarrow \alpha . X\beta, a$ ] in I )
    - add item [A  $\rightarrow \alpha X.\beta,a$ ] to set J;
- return CLOSURE(J ); }

- voluments(G) {
  initialize C to {CLOSURE [S'→.S,\$]};
  repeat
  - for ( each set of items I in C ) for ( each grammar symbol X ) if ( GOTO(I, X) is not empty and not in C )
  - add GOTO(I, X) to C;
    - until no new sets of items are added to C;

- Canonical LR(1) Parsing Tables:
- Algorithm : Construction of canonical-LR parsing tables.
  ACTION:
- (a) If  $[A \rightarrow \alpha, \alpha\beta, b]$  is in  $I_i$  and GOTO $(I_i, \alpha) = I_j$ , then set ACTION[i,a]to "shift j." Here a must be a terminal.
- (b) If  $[A \rightarrow \alpha, a]$  is in  $I_i, A \neq S'$ , then set ACTION[i,a] to " $r_j$ "; j is reduction number.
  - (c) If  $[S' \rightarrow S.]$  is in  $I_i$ , then set ACTION[i, \$] to "accept".
  - If any conflicting actions result from the above rules, we say the grammar is not LR(1). The algorithm fails to produce a parser in this case.
    GOTO:
  - The GOTO transitions for state i are constructed for all non terminals A using the rule: If  $GOTO(I_i, A) = I_j$ , then GOTO[i, A] = j.
  - A LR parser using this table is called a CLR(1) parser.
  - If the table has no multiple entries then the given grammar is called LR(1) grammar.

• Ex 1: • Augmented grammar		ACT	ΓΙΟΝ	https	://monali GC	sacs.com/ )TO
• $S \rightarrow CC$ • $C \rightarrow cC d$ • $S \rightarrow CC$	State	c	d	\$	S	С
FIRST(S)={c,d}, C $\rightarrow$ cC d	0	S ₃	$S_4$		1	2
FIRST(C)= $\{c,d\}$	1			acc		
$S' \rightarrow S., $ $C \downarrow I_5$ $C \downarrow C \downarrow C$	2	S ₆	<b>S</b> ₇			5
$I_{1} \xrightarrow{c} C \xrightarrow$	3	S ₃	$S_4$			8
$\begin{array}{c c} S & C & C \rightarrow C, \\ \hline C & C \rightarrow .cC, \\ \end{array} & C \rightarrow .d, \\ \end{array}$	4	r ₃	r ₃			
$S \rightarrow .CC, $ $C \rightarrow .d, $ $d \qquad I_6  d$	5			r ₁		
$C \rightarrow .cC, c/d$ $I_2$ $C \rightarrow d., \$$	6	S ₆	<b>S</b> ₇	-		9
$C \rightarrow .d, c/d$ $c$ $C \rightarrow c.C, c/d$ $I_7$	7			r ₃		
$\begin{array}{c} 1_{0} \\ \mathbf{d} \\ \mathbf{C} \rightarrow .cC, c/d \\ \mathbf{C} \rightarrow cC., c/d \end{array}$	8	r ₂	r ₂			
$\begin{array}{c c} C \rightarrow d. \ , c/d \end{array} \qquad \begin{array}{c c} C \rightarrow .d, c/d \end{array} \qquad \begin{array}{c c} C \rightarrow .d, c/d \end{array} \qquad \begin{array}{c c} C \rightarrow .d, c/d \end{array} \qquad \begin{array}{c c} I_8 \end{array}$	9			r ₂		
$I_4$ • CLR(1) Grammar			https://wv	ww.youtube.	com/@M	onalisaCS

- **1.** Shift-reduce conflict :
- Shift terminal  $\cap$  reduction look ahead symbol  $\neq \emptyset$ , SR conflict in LR(1)

A

b

2.Reduce-reduce conflict :



$$\begin{array}{c} A \rightarrow \alpha., a \\ B \rightarrow \gamma., a \end{array}$$

- $r_i$  look ahead symbol  $\cap$   $r_i$  look ahead symbol  $\neq \emptyset$  then its RR conflict in LR(1).
- The grammar is LR(1) if & only if it is free from both SR & RR conflict.

 $S \rightarrow A.a.$ 

 $S \rightarrow b.B,$ 

A→b.,a

 $B \rightarrow .b, \$$ 

 $B \rightarrow a,$ 

Ex 2:

 $S' \rightarrow S.,$ \$

$$\begin{array}{c|c} S \rightarrow Aa|bB \\ A \rightarrow aA|b \\ B \rightarrow b|a \end{array} \quad S$$

 $S' \rightarrow .S.$  $S \rightarrow Aa,$ S

 $S \rightarrow .bB.$ 

 $A \rightarrow .aA,a$ 

 $A \rightarrow .b.a$ 

- $a \cap a = a$  Shift reduce conflict present.
- The grammar is not LR(1)
- FOLLOW(A)  $\cap$  {a}=a, SR conflict for both LR(0) & SLR
- Not LR(0), SLR grammar
- $FIRST(Aa) \cap FIRST(bB) = b$
- Not LL(1) grammar

The grammar is not LL(1) or LR as it is ambiguous. For string "ba" there are more than one parse tree.



•  $a \cap b = \emptyset$ , No R-R conflict present for CLR.

- The grammar is LR(1) or CLR
- FOLLOW(A) ∩FOLLOW(B)= Ø,No R-R conflict for SLR
- The grammar is SLR .
- But for LR(0) R-R conflict present.
- The grammar is not LR(0)
- FIRST(Aa)  $\cap$  FIRST(Bb) =d
- Not LL(1) grammar

#### LALR(1) Parser:

- Minimal LR(1) Automata.
- The Automata of CLR(1) parser may contain some states with same production part and different look ahead part.
- Make all these state to single state by union of LA part & again draw the automata & construct the parse table ,which called as LALR table.
- If there are no parsing action conflicts, then the given grammar is said to be an LALR(1) grammar.
- The collection of sets of items are called LALR(1) collection.
- The SLR and LALR tables for a grammar always have the same number of states, and this number is typically several hundred states for a language like C.
- The canonical LR table would typically have several thousand states for the same-size language.
- CLR(1) is more powerful than LALR(1) & LALR(1) is more powerful than SLR(1).
- Every LALR(1) grammar is CLR(1) But every CLR(1) need not be LALR(1).
- If CLR(1) have RR conflict or may not have RR conflict, still LALR(1) may have RR Conflict. LALR(1) have SR conflict if and only if CLR(1) have SR conflict.
- The grammar which is not CLR also not LALR.
- Every SLR(1) grammar is LALR(1) but reverse may not true.
- Number of states in CLR(1) Automata $\geq$ LALR(1) Automata.

	Ex 1: $C \rightarrow cC.,\$$		ACJ	TION	https	://monali	sacs.com/ DTO
	$\begin{array}{c c} S \to CC \\ \hline C \to cC   d \\ \hline S' \to S., \$ \\ \hline C & I_{5} \\ \hline C \to C & \$ \\ \hline C & I_{5} \\ \hline C \to C & \$ \\ \hline C & \bullet C $	State	С	d	\$	S	С
	$I_1 \qquad S \qquad C \qquad S \rightarrow C.C, \ C \qquad C \rightarrow .cC, \ C $	0	S ₃₆	S ₄₇		1	2
	$ \begin{array}{c} S' \rightarrow .S, \$ \\ S \rightarrow .CC, \$ \\ \end{array} \begin{array}{c} C \rightarrow .cC, \$ \\ C \rightarrow .d, \$ \\ d \\ \end{array} \begin{array}{c} C \rightarrow .d, \$ \\ I_6 \\ d \\ \end{array} \begin{array}{c} C \rightarrow .d, \$ \\ \end{array} $	1			acc		
	$\begin{bmatrix} C \rightarrow .cC, c/d \\ C \rightarrow .d. c/d \\ \end{bmatrix} \begin{bmatrix} I_2 \\ C \rightarrow d., \$ \\ I \\ \end{bmatrix}$	2	S ₃₆	S ₄₇			5
	$\begin{array}{c c} I_0 \\ I_0 \\ I_0 \\ d \\ C \\ \hline C \\ \hline$	36	S ₃₆	S ₄₇			89
	$C \rightarrow d., c/d$ $C \rightarrow .d, c/d$ $C \rightarrow .d, c/d$ $C \rightarrow .d, c/d$	47	r ₃	r ₃	r ₃		
	I and I are replaced by their union	5			r ₁		
•	$I_{36}: C \rightarrow c.C, c/d/\$$	89	r ₂	$r_2$	$r_2$		
•	$C \rightarrow .cC, c/d/\$$ • The gramma	ar is LR	(0),S	LR,CL	R(1)&	LAL	LR
•	$C \rightarrow .d, c/d/$ • LALR parsi	ng table	e is sa	me as	SLR ta	ble.	
•	$I_4$ and $I_7$ are replaced by their union. • The gramma	ar is also	o LL(	(1).			
•	$I_{47}: C \rightarrow d., c/d/\$$		-				
•	$I_8$ and $I_9$ are replaced by their union.						
	$I_{89}: C \rightarrow cC., c/d/\$$			https://wv	vw.youtube.	com/@Mo	onalisaCS

### $LL(k) \leq LR(k)$

- Set of all LL(0) CFG  $\subset$  Set of all LL(1) CFG  $\subset$  Set of all LL(2) CFG...
- Set of all LR(0) CFG  $\subset$  Set of all LR(1) CFG  $\subset$  Set of all LR(2) CFG...
- Set of all LL(k) CFG  $\subset$  Set of all LR(k) CFG.
- CLR(1) is more powerful efficient among all the parser.
- But it is very costly hence LL(1) & LALR(1) widely used in the real time compiler construction.
- If one LL(1) grammar having no null production then its also SLR(1)
- Every LL(1) grammar is LALR(1), hence LR(1) as LALR(1)  $\subset$  CLR(1)
- Power :LR(0) < SLR(1) <LALR(1) <CLR(1)
- Easy to implement: LR(0)>SLR(1)>LALR(1)>CLR(1)
- Grammar : Set of LR(0) CFG  $\subset$  SLR(1) class  $\subset$  LALR(1) class  $\subset$  CLR(1) Class
- Language : Set of LR(0) Language  $\subset$  SLR(1) class  $\subset$  LALR(1) class  $\subset$  CLR(1) Class
- Parser : LR(0) < SLR(1) < LALR(1) < CLR(1)
- Table Size :LR(0)=SLR(1)=LALR(1) $\leq$ CLR(1)
- Reduce entry in table: LR(0)>SLR(1)=LALR(1)>CLR(1)
- Number of state in Automata :LR(0)=SLR(1)=LALR(1) $\leq$ CLR(1)

# **Relation between all parser**



GATE CS 2003,Q57:Consider th	ne grammar shown below.				
S→C C					
$C \rightarrow c C   d$					
This grammar is					
(A)LL(1)	(B)SLR(1) but not $LL(1)$				
(C)LALR(1) but not SLR(1)	(D)LR(I) but not LALR(1)				
Ans: (A)LL(1)					
GATE CS 2008,Q55:An LALR(1) parser for a grammar G can have shift-reduce (S-					
R) conflicts if and only if					
(A)The SLR(1) parser for G has S-R conflicts					
(B)The LR(1) parser for G has S	-R conflicts				
(C)The LR(0) parser for G has S	-R conflicts				

- (D)The LALR(1) parser for G has reduce-reduce conflicts
- Ans :(B)

# • GATE CS 2005, Q60: Consider the grammar:

•  $S \rightarrow (S)|a$ 

13

- Let the number of states in SLR (1), LR(1) and LALR(1) parsers for the grammar be  $n_1, n_2$  and  $n_3$  respectively. The following relationship holds good:  $n_2=10$
- (A) $n_1 < n_2 < n_3$  (B) $n_1 = n_3 < n_2$  (C) $n_1 = n_2 = n_3$  (D) $n_1 \ge n_3 \ge n_2$ Number of state in Automata : LP(0) - SLP(1) - LALP(1) < CLP(1)
- Number of state in Automata : $LR(0)=SLR(1)=LALR(1)\leq CLR(1)$



- $I_2 \cup I_5 = I_{25}$
- $I_3 \cup I_6 = I_{36}$
- $I_4 \cup I_8 = I_{48}$
- $I_7 \cup I_9 = I_{79}$
- $n_3 = 6, n_1 = 6$
- Ans:
  - $(B)n_1 = n_3 < n_2$