
Compiler Design

Chapter 2: Parsing

GATE CS Lectures

 by Monalisa
M

on
ali

sa
CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Section 7: Compiler Design(≅5 mark)

 Lexical analysis, parsing, syntax-directed translation. Runtime environments.

Intermediate code generation . Local optimization, Data flow analyses: constant

propagation, liveness analysis, common subexpression elimination.

 Chapter 1: Introduction to Compiler [Language processing System ,Compiler ,Phases

of Compiler , Lexical Analysis]

 Chapter 2: Parsing [Syntax Analysis , CFG, Ambiguous Grammar , Recursive

Grammar ,Left Factoring ,Top down parser : LL(1),FIRST & FOLLOW , Bottom up

parser : shift-reduce parsing ,LR(0),SLR(1),CLR(1), LALR(1), Operator Precedence

grammar]

 Chapter 3: SDT , Code optimization &Runtime environments
M

on
ali

sa
CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Syntax Analysis
 Syntax analysis is the second phase of the compiler. It gets the input from the tokens

and generates a syntax tree or parse tree.

 The parsing technique is implemented by CFG.

 Functions of the parser :

 1. It verifies the structure generated by the tokens based on the grammar.

 2. It constructs the parse tree.

 3. It reports the errors.

 4. It performs error recovery.

 Parser can detect errors during construction of syntax tree and grammar of language.

 Ex: such as an arithmetic expression with unbalanced parentheses.

 Parser cannot detect errors such as:

 1. Variable re-declaration

 2. Variable initialization before use.

 3. Data type mismatch for an operation.

 The above issues are handled by Semantic Analysis phase

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Error-Recovery Strategies

 1. Panic mode, 2. Phrase level, 3. Error productions, 4. Global correction

 Types of parser :

 There are two types of parsers for grammars: topdown and bottom-up.

 Top-down methods build parse trees from the top (root) to the bottom (leaves), while

bottom-up methods start from the leaves and work their way up to the root.

 In either case, the input to the parser is scanned from left to right,one symbol at a time.

 CFG: Finite Set of rules which are used to generate the string is called as grammar.

 It has 4 tuples G=(V,T,P,S)

 Classification of Grammar

 Grammar can be classified in two ways

 1.Based on Derivation tree
 Ambiguous Grammar

 Unambiguous Grammar

 2.Based on number of string
 Recursive Grammar

 Non Recursive Grammar

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Ambiguous Grammar: The grammar is said to be ambiguous if more than one parse

tree exist for at least one string.

 Ex:S→aS|Sa|a ,w=aaa

S

a S

a S

a

S

S a

S a

a

S

a S

S a

a
 Ambiguity of CFG is undecidable.

 Unambiguous Grammar :

 The grammar is said to be unambiguous if there exist unique parse tree for every

input string. Ex:S →aSb| ∈,w=aabb

 No algorithm exist to convert ambiguous grammar to unambiguous grammar except

operator grammar.

 The Ambiguous grammar which can’t be converted to unambiguous is called

inherent Ambiguous grammar .

 Operator |Expression grammar can be converted to unambiguous

by redefine grammar using associativity & operator precedence.

 Precedence: id,bracket > ^ > *,| > + , -

 ^ is right associative,*,|,+,- are left associative.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Removal of Ambiguity from Expression Grammar

 E→E+E | E-E | E*E | E^E | (E) | id

 W=id + id * id

E

E + E

E * Eid

id id

E

E E*

E + E

id id

id
 This is a ambiguous grammar.

 In parse tree highest precedence operator is always at

lower level than lower precedence.

 It grow left side if operator is left associative & grow

right if it is right associative

 Lets rewrite unambiguous grammar

Operator Associativity Variable Grammar

+,- Left E E→E+F | E-F|F

* Left F F→F*G|G

^ Right G G→H^G|H

(),id H H→(E)|id

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Find associativity & operator precedence of all the operator ?
 S→S@W |W
 W→W#Y|Y
 Y→Y$A|A
 A→B%A|A&B|id
 Sol:@<#<$<%,&,id
 Left associative @,#$,&
 Right associative %
 GATE2000-21, ISRO2015-24:Given the following expression grammar:
 E → E * F | F + E | F
 F → F - F | id
 which of the following is true?
 (A) * has higher precedence than +
 (B) – has higher precedence than *
 (C) + and - have same precedence
 (D) + has higher precedence than *
 Ans: (B) – has higher precedence than *

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Recursive Grammar :If at least one production contain same variable both at LHS and
RHS. Ex:S →aSb| ∈

 Non Recursive Grammar :If no Production contain same variable both at LHS and RHS
 Ex:S→aA|b,A→a
 Non Recursive →Finite Language
 Recursive →Infinite Language
 Types of Recursion:
 1.Left Recursion
 The Grammar is said to be left recursive if left most variable of RHS is same as variable

of LHS.
 Ex:A→Aa|b
 2.Right Recursion
 The Grammar is said to be right recursive if the right most variable of RHS is same as

variable of LHS.
 Ex: A→aA|b
 3.General Recursion
 The Grammar is said to be general recursive if it is neither left nor

right recursive . Ex :A→aAb|b

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 If the grammar is left recursive then parser may goes to infinite loop.
 To avoid looping we need to convert left recursive grammar to right recursive

grammar.
 Conversion of LRG→RRG:
 1.A →A𝛼|𝛽 ⇒ A → 𝛽𝐴′

 𝛽𝛼* ⇒ 𝐴′ → 𝛼𝐴′|∈
 2.A →A𝛼1| A𝛼2|…… A𝛼n| 𝛽 ⇒ A → 𝛽𝐴′

 ⇒ 𝐴′ → 𝛼1𝐴′| 𝛼2𝐴′|….. 𝛼n𝐴′|∈
 3.A →A𝛼| 𝛽1|𝛽2|…… 𝛽n ⇒ A → 𝛽1𝐴′| 𝛽2𝐴′|……. 𝛽n𝐴′

 ⇒ 𝐴′ → 𝛼𝐴′|∈
 4.A →A𝛼1| A𝛼2|…A𝛼n| 𝛽1|𝛽2|…𝛽n ⇒ A → 𝛽1𝐴′| 𝛽2𝐴′|……. 𝛽n𝐴′

 ⇒ 𝐴′ → 𝛼1𝐴′| 𝛼2𝐴′|….. 𝛼n𝐴′|∈
 Ex 1:A →Aab|c ⇒A →cA′
 ⇒ A′ →ab A′| ∈
 Ex 2:S→SaS|bS|a ⇒S →aS′|bSS′
 ⇒ S′ →aS S′|∈
 Ex 3:E→E+E|E*E|(E)|id ⇒ E →idE′|(E)E′
 ⇒ E′ → +EE′|*EE′|∈

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Grammar with common prefix:
 If more than one production start with same sequence of grammar symbol then the

grammar is called as Grammar with common prefix.
 Ex:A→aAa|aAb|∈
 Left Factoring:
 Left factoring is a grammar transformation that is useful for top-down parsing.
 The process of removing common prefix or eliminating nondeterminism is called as

left factoring.
 A → αβ1|αβ2 |αβ3 ⇒ A →αA′

 ⇒ A ′ →β1|β2|β3
 Ex 1:A →ab|ac|ad|ae ⇒ A →aB
 ⇒ B →b|c|d|e
 Ex 2:E→E+E|E*E|(E)|id ⇒ E →EE′|(E)|id
 ⇒ E′ → +E|∗E
 Ex 3:S → SaSbS/SbSaS/∈ ⇒ S → SS′|∈
 ⇒ S′ → aSbS|bSaS
 The grammar with both left & right recursive is always ambiguous.
 Left factoring will not remove ambiguity.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Classification of Parser

1) Top down parser

2) Bottom up parser

 Top down Parser:

 The process of constructing parse tree starting with root & going upto the leaves or

children is called top down parsing.

 Top down parser simulate left most derivation.

 It takes the grammar which is free from ambiguity , left recursion & common prefix.

 Top down parser is very slow . Average time complexity O(n3) ,n=number of token.

 Types of top-down parsing :

1) Recursive descent parsing/Bruteforce Technique [with backtracking]

2) Predictive parsing(LL1) [without backtracking]

 Recursive descent parsing:

 This parsing method may involve backtracking, that is, making

repeated scans of the input.

 Backtracking is costly. Debugging is very difficult.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Ex: Consider the grammar S→cAd

 A→ab|a

 input string w=cad.

 Step1:Initially create a tree with single node labeled S. An input pointer points to ‘c’,

the first symbol of w.

 Step2: The leftmost leaf ‘c’ matches the first symbol of w, so advance the input

pointer to the second symbol of w ‘a’ and consider the next leaf ‘A’.

 Expand A using the first alternative.

S

c A d

S

c A d

a b

 Step3: The second symbol ‘a’ of w also matches with second leaf of tree. So advance

the input pointer to third symbol of w ‘d’.

 But the third leaf of tree is ‘b’ which does not match with the input symbol ‘d’ Hence

discard the chosen production and reset the pointer to second position.

 This is called backtracking.

 Step4: Now try the second alternative for A .

❖ If matching doesn’t occur then match with alternative.

 If it match at least one alternative then parsing is successful else fail.

S

c A d

a

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Predictive parsing:
 No backtracking.
 Grammar must be free from ambiguity , left recursion & common prefix.
 LL(1) Parser:
 The first “L” : scanning the input from left to right,the second “L”:producing a leftmost

derivation, and the “1” :using one input symbol of look ahead at each step to make
parsing action decisions.

 The current parsing symbol is called look ahead symbol.
 Block Diagram of LL(1) Parser:
 LL(1) parser consist of 3 component
1) Input Buffer
2) Parse stack
3) Parse table

I/P Buffer

$

↑

← LL(1) Parser

$ ↑

Stack Parsing table LL(1) Grammar:
 The grammar for which LL(1) parser can be constructed is called LL(1)

grammar.
 The grammar is LL(1) if its parse table is free from multiple entries.
 Function used to construct LL(1) parse table
 1.FIRST(X), 2.FOLLOW(A) [X∈V+T,A ∈V]

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 FIRST(X):
 FIRST (x) is set of all terminals that may begin any sentential form or production.
 The first terminal which can be derived from a variable in process of derivation.
 Rules for FIRST():
1) If X is terminal, then FIRST(X) is {X}.
2) If X→ ε is a production, then add ε to FIRST(X).
3) If X is non-terminal and X → aα is a production then add a to FIRST(X).
4) If X is non-terminal and X → Y1 Y2…Yk is a production, then place a in FIRST

(X) if for some i, a is in FIRST(Yi), and ε is in all of FIRST(Y1) ,…, FIRST(Yi-1);
that is, Y1 ,..Yi-1 => ε.If ε is in FIRST(Yj) for all j=1,2,..,k, then add ε to
FIRST(X).

5) If X → Y & both are non-terminal then FIRST(X)=FIRST(Y).

➢ Ex 1:A →a|b|∈
 FIRST(A)={a,b,∈}

➢ Ex 2:S→aSb|bSa|∈
 FIRST(S)={a,b,∈}

➢ Ex 3:S→aA|bB
➢ A →aA|b
➢ B →b | ∈
 FIRST(S) ={a,b}
 FIRST(A)={a,b}
 FIRST(B)={b,∈}

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

➢ Ex 5:S→AB
➢ A →a | ∈
➢ B →b|c
 FIRST(S) ={a,b,c}
 FIRST(A)={a,∈}
 FIRST(B)={b,c}

➢ Ex 6:S→AB

➢ A →aA | ∈
➢ B →bB|∈
 FIRST(S) ={a,b,∈}

 FIRST(A)={a,∈}

 FIRST(B)={b, ∈}
➢ Ex 7:S→ABCDE
➢ A →a|∈
➢ B →b|∈
➢ C →c|∈
➢ D →d
➢ E →e|∈
 FIRST(S) ={a,b,c,d}
 FIRST(A)={a,∈}
 FIRST(B)={b,∈}
 FIRST(C)={c,∈}
 FIRST(D)={d}
 FIRST(E)={e,∈}

➢ Ex 8:E→TE′
➢ E′→+TE′ |∈
➢ T→FT′
➢ T′→∗FT′|∈
➢ F→(E)|id

➢ FIRST(E) ={(,id}

 FIRST(E′)={+,∈}

 FIRST(T)={(,id}

 FIRST(T′)={*,∈}

 FIRST(F)={(,id}

➢ Ex 4:S→Aa

➢ A →b | ∈
 FIRST(S) ={a,b}

 FIRST(A)={b,∈}

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 FOLLOW(A):

 A terminal which can follow a variable during process of derivation.

 FOLLOW(A) is the set of all terminals that may followed to the right of A in any

production or any sentential form.

 Rules for FOLLOW():

1) If S is a start symbol, then FOLLOW(S) contains $.

2) If there is a production A → αBβ, then everything in FIRST(β) except ε is placed in

FOLLOW(B).

3) If there is a production A → αBβ where FIRST(β) contains ε, then FOLLOW(B)=

FOLLOW(A) ∪ FIRST(β)- ε.

4) If S→ αA or S→ A then FOLLOW(A)= FOLLOW(S)

➢ Ex-1:A →a|∈
 FOLLOW(A)={$}

➢ Ex-2:A →A(A)|∈
 FOLLOW(A)={$,(,)}

➢ Ex-3:S →aA

➢ A →aAb|Sa|∈
 FOLLOW(S)={$,a}

 FOLLOW(A)={$,a,b}

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

➢ Ex-4:
➢ S →aAB
➢ A→aAc|∈
➢ B→bB|a
 FOLLOW(S)={$}
 FOLLOW(A)={a,b,c}
 FOLLOW(B)={$}

➢ Ex-5:
➢ S →AB
➢ A→aA|∈
➢ B→bB|∈
 FOLLOW(S)={$}
 FOLLOW(A)={b,$}
 FOLLOW(B)={$}

➢ Ex-6:
➢ S→ABCDE
➢ A →a|∈
➢ B →b|∈
➢ C →c|∈
➢ D →d
➢ E →e|∈
 FOLLOW(S) ={$}
 FOLLOW(A)={b,c,d}
 FOLLOW(B)={c,d}
 FOLLOW(C)={d}
 FOLLOW(D)={e,$}
 FOLLOW(E)={$}

➢ Ex-7:
➢ E→TE′
➢ E′→+TE′ |∈
➢ T→FT′
➢ T′→∗FT′|∈
➢ F→(E)|id
➢ FOLLOW(E) ={),$}
 FOLLOW(E′)={),$}
 FOLLOW(T)={+,),$}
 FOLLOW(T′)={+,),$}
 FOLLOW(F)={*, +,),$}

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Construction of predictive / LL(1) Parse Table:
 For each production A →𝛼 of the grammar , do the following:
1) For each terminal a in FIRST(A) add A →𝛼 to M[A,a].
2) If ∈ is in FIRST(A),then for each terminal b in FOLLOW(A),add A →𝛼 to M[A,b].

If ∈ is in FIRST(A) and $ is in FOLLOW(A),add A →𝛼 to M[A,$] as well.
 The grammar G is LL(1) if predictive parse table is free from multiple entries.
 Ex-1: A →aA |b

FIRST FOLLOW

A a,b $

a b $

A A →aA A →b

 Ex-2:
 S→aA|Bb
 A →aA|b
 B →bB|∈

FIRST FOLLOW

S a,b $

A a,b $

B b,∈ b

a b $

S

A

B

S→aA S→Bb

A →aA A →b

B→bB
B →∈

 Since there are more than one production,

the grammar is not LL(1) grammar.

 All ∈ production should be placed FOLLOW of LHS variable.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Ex-3:
 S→Aa|bB
 A →aA|c
 B →bB|∈

FIRST FOLLOW

S a,b,c $

A a,c a

B b, ∈ $

a b c $

S

A

B

S→Aa S→bB S→Aa

A→aA A→c

B →bB B →∈
 Ex-4:
 S→Aa|bB
 A →aA|Bb|d
 B →SB|b

FIRST FOLLOW

S a,b,d $,a,b,d

A a,b,d a

B a,b,d b,a,d,$

a b d $

S

A

B

S→Aa S→bB
S→Aa

S→Aa

 If any terminal is repeated in FIRST(A) then the grammar is not LL(1)

 Ex-5: S→(S)| ∈

FIRST FOLLOW

S (, ∈ $,)

() $

S S→(S) S→∈ S→∈

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Ex-6:

 E→TE′
 E′→+TE′|∈
 T→FT′
 T′→∗FT′|∈
 F→(E)|id

FIRST FOLLOW

E (,id),$

E′ +, ∈),$

T (,id +,),$

T′ *, ∈ +,),$

F (,id +,*,),$

id () + * $

E

E′

T

T′

F

E→TE′ E→TE′

E′→+TE′ E′→∈ E′→∈

T→FT′ T→FT′

T′→∗FT′T′→∈ T′→∈ T′→∈

F→id F→(E)

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Short Cut method for testing LL(1) Grammar:
 1.If the grammar is free from ∈ production & for every production of the form A→

𝛼1| 𝛼2| 𝛼3|..…𝛼n the set FIRST(𝛼1)∩ FIRST(𝛼2)….. FIRST(𝛼n) =∅ then grammar is
LL(1).

 Ex-4
 S →Aa|bB
 A →aA|Bb|d
 B →SB|b
 2.If the grammar contain ∈ production & for every production of the form A→ 𝛼1|

𝛼2| 𝛼3|…..𝛼n the set FIRST(𝛼1)∩ FIRST(𝛼2)..… FIRST(𝛼n) =∅ & for every
production A→ 𝛼| ∈ then FIRST(𝛼)∩FOLLOW(A) =∅ then grammar is LL(1).

 Ex-2
 S →aA|Bb
 A →aA|b
 B →bB|∈
 3.Every ambiguous grammar is not LL(1) .
 4.Every left recursive grammar is not LL(1).
 5.Every grammar having common prefix is not LL(1).

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Ex-1:A →ab|bc|d Ex-1:{a}∩{b}∩{d} LL(1)
 Ex-2:A →ab|ac|d Ex-2:{a}∩{a}∩{d} not LL(1)

 Ex-3:S →aSb |∈ Ex-3:{a}∩{$,b} LL(1)

 Ex-4:S →aSb|bSa|∈
 Ex-4:{a}∩ {b} ∩{a,b,$}not LL(1)

 Ex-5: S →aA |BbA

 A →aA|b

 B →bB|∈

 Ex-5:{a}∩{b}

 {a}∩{b}

 {b}∩{b} Not LL(1)

 Ex-6: S →Aa|bB

 A →bA|dB|∈
 B →aBb|d

 Ex-6:{a,b,d} ∩{b} not LL(1)

 Ex-7: S →aSbS|bSaS| ∈ Ex-7:{a} ∩{b} ∩{a,b,$} not LL(1)

 Ex-8: S →aABb

 A →c|∈

 B →d|∈

 Ex-8:

 {c} ∩{d,b}

 {d} ∩{b} LL(1)

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 LL(1) Parsing process using stack:
1) Push the start symbol of the grammar into the stack.
2) Compare the topmost symbol of stack to look ahead symbol.
3) If matching occurs (x=a≠$) then pop off & increment the input pointer
4) If matching doesn’t occur (x ≠ a ≠$) then perform the push operation again compare

the top of the stack with look ahead symbol.
5) After reading the complete string if the stack is empty(x=a=$ }then parsing is

successful .
• x= top of stack symbol,a=current input symbol,$=end marker.
• Ex-1:S→(S)| ∈ ,w=(())

$

Stack i/p string Action

$ (())$ Push(S)
$S (())$ Push(S→(S))
$)S((())$ Pop
$)S ())$ Push(S→(S))
$))S(())$ Pop
$))S))$ Push(S→∈)
$))))$ Pop
$))$ Pop
$ $ accept

 Number of different push operation =3

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Ex-2:

 S →AA

 A →aA|b

 W=abab

a b $

S S →AA S →AA

A A →aA A →b
Stack i/p string Action

$ abab$ Push(S)

$

$S abab$ Push(S →AA)
$AA abab$ Push(A →aA)
$AAa abab$ Pop
$AA bab$ Push(A →b)
$Ab bab$ Pop
$A ab$ Push(A →aA)
$Aa ab$ Pop
$A b$ Push(A →b)
$b b$ Pop
$ $ Accept

 Number of different push operation =4

 Minimum number of distinct push operation=n[without ∈ production]

 n=number of tokens

 In case of ∈ Minimum number of distinct push operation= n-1

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

➢ Bottom up Parser:
 Constructing a parse tree for an input string beginning at the leaves and going

towards the root is called bottom-up parsing.
 Ex: E→E+T|T , T→T*F|F, F→(E)|id
 W=id*id
 A general type of bottom-up parser is a shift-reduce parser.
 The class of grammars for which shift-reduce parsers can be built, the LR grammars.
 Bottom up parser simulates reverse of right most derivation.
 Bottom up parser is more powerful than top down parser.
 Average time complexity O(n3) ,n=number of token.
 Bottom up parser takes unambiguous grammar for LR parsing.

➢ Reductions :
 Bottom-up parsing as the process of "reducing" a string w to the start symbol of

grammar.
 At each reduction step, a specific substring matching the body of a production is

replaced by the non terminal at the head of that production.
 Ex:A sequence of reductions id*id, F*id, T*id, T*F, T, E.
 A reduction is the reverse of a step in a derivation .

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Handle Pruning:

 A handle of a string is a substring that matches the right side of a production, and

whose reduction to the non-terminal on the left side of the production is possible.

 The process of finding & reducing the handle is called as handle pruning.

Sentential form Handle Reducing Production

id1*id2 id1 F→id

F*id2 F T→F

Grammar:

E→E+T|T

T→T*F|F

F→(E)|idT*id2 id2 F→id

T*F T*F T→T*F

T T E→T

I/P Buffer

$

↑

← Bottom up

parser

$ ↑↓

Stack Parsing table

 Block diagram of bottom up parser:

 It consist of 3 component

1) Input buffer

2) Parse stack

3) Parse table

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Shift-Reduce Parsing:

 Shift-reduce parsing is a form of bottom-up parsing in which a stack holds grammar

symbols and an input buffer holds the rest of the string to be parsed.

 We use $ to mark the bottom of the stack and also the right end of the input.

 During a left-to-right scan of the input string, the parser shifts zero or more input

symbols onto the stack, until it is ready to reduce a string of grammar symbols on

top of the stack.

 It then reduces to the head of the appropriate production.

 The parser repeats this cycle until it has detected an error or until the stack contains

the start symbol and the input is empty

 There are four possible actions a shift-reduce parser:

(1) shift, (2) reduce, (3) accept, (4) reject

 Shift: Shift the next input symbol onto the top of the stack.

 Reduce: The parser replaces the handle within a stack with a variable.

 Accept: At the end of parsing if the stack contains only the start

symbol then the string is accepted and parsing is successful.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Reject: At the end of parsing if the stack contains anything other than start symbol
then the string is reject and parsing is unsuccessful.

 Ex-1:

 S →AA

 A →aA|b

 W=abab

$

Stack i/p string Action

$ abab$ Shift
$a bab$ Shift
$ab ab$ Reduce(A→b)
$aA ab$ Reduce(A→aA)
$A ab$ Shift
$Aa b$ Shift
$Aab $ Reduce(A→b)
$AaA $ Reduce(A→aA)
$AA $ Reduce(S→AA)
$S $ Accept

 Number of different reduce operation =3
 Maximum number of reduce moves that can be taken by Shift reduce

parser / bottom up parser for a grammar with no ∈ and unit
production to parse a string of n token is n-1.

 |abab|=4
 Number of reduce operation =4-1=3

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Ex-2:

 E→E+T|T

 T→T*F|F

 F→(E)|id

 W=id1*id2

$

Stack i/p string Action

$ id1*id2$ Shift
$id1 *id2$ Reduce(F→id)
$F *id2$ Reduce(T→F)
$T *id2$ Shift
$T* id2$ Shift
$T*id2 $ Reduce(F→id)
$T*F $ Reduce(T→T*F)
$T $ Reduce(E→T)
$E $ accept

 Number of different reduce operation =4

 Maximum number of reduce moves =n-1[without unit, ∈ production]

 | id1*id2 |=3-1=2

 In case of unit production n-1+number of unit production.

 2+2[E→T, T→F]=4

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Conflicts During Shift-Reduce Parsing
 1. Shift-reduce conflict:The parser cannot decide whether to shift or to reduce.
 Consider grammar: E→E+E | E*E| id ,input :id+id*id

Stack i/p string Action Stack i/p string Action

$E+E *id$ Reduce E→E+E $E+E *id$ Shift
$E *id$ Shift $E+E* id$ Shift
$E* id$ Shift $E+E*id $ Reduce E→id
$E*id $ Reduce E→id $E+E*E $ Reduce E→E*E
$E*E $ Reduce E→E*E $E+E $ Reduce E→E+E
$E $ Accept $E $ Accept

 2.Reduce-reduce conflict:The parser cannot decide which of several reductions to

make. Consider grammar:M →R+R|R+c , R →c,input :c+c
Stack i/p string Action Stack i/p string Action

$ c+c$ Shift $ c+c$ Shift
$c +c$ Reduce R→c $c +c$ Reduce R→c
$R +c$ Shift $R +c$ Shift
$R+ c$ Shift $R+ c$ Shift
$R+c $ Reduce R→c $R+c $ Reduce M→R+c
$R+R $ Reduce M→R+R $M $ Accept
$M $ Accept

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Classification of bottom up parser

1) Operator Precedency parser

2) LR Parser
 LR(0) item: LR(0), SLR(1)

 LR(1) item: CLR(1),LALR(1)

 Operator-precedence parsing

 An efficient way of constructing shift-reduce parser is called operator precedence

parsing .

 Operator-grammar: These grammars have the property that no production on right

side is ɛ or has two adjacent non terminals.

 Example: Consider the grammar: E → EAE | (E) | -E | id

 A → + | - | * | / | ^

 The right side EAE has three consecutive non-terminals, so not operator grammar.

 The grammar can be written as follows:

 E → E+E | E-E | E*E | E/E | E^E | -E | id

 Operator grammar can be ambiguous or unambiguous.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 In operator grammar every terminal is operator.

 Only terminal are used for operator precedency grammar

 Operator grammar work on precedency & associativity property.

 Operator precedence grammar :the operator grammar for which an operator

precedency parser can be constructed is called operator grammar.

 Operator precedence relations:

 There are three precedence relations namely <. , = , .>
1) a < . b :a yields precedence to b.b reduce before a.

2) a = b :a has the same precedence as b. reduce according to associativity.

3) a . > b :a takes precedence over b.a reduce before b.

 Rules for constructing precedence parse table:

 Let θ1 & θ2 be two operations.
1) If θ1 has higher precedence than θ2, then make θ1 .> θ2 and θ2 <. θ1.

2) If θ1 and θ2 , are of equal precedence, then make θ1 .> θ2 and θ2 .> θ1 if operators are left

associative , θ1 <. θ2 and θ2 <. θ1 if right associative.

 ‘id’ > ‘^’ is right-associative > ‘*’ , ‘/’ left-associative and

> ‘+’ ,‘-’ left-associative >$

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Operator precedence parsing algorithm:
 Let a is the top of stack & b is the look ahead symbol.
1) If a <. b ,or a = b then shift b onto the stack; advance ip to the next input symbol;
2) Else if a . > b then /*reduce*/

repeat {pop the stack until the top stack terminal is related by <.to the terminal most recently
popped}

3) If a=b=$ parsing successful .

 Stack implementation of operator precedence parsing:
 Operator precedence parsing uses a stack and precedence relation table for its

implementation of above algorithm.
 The initial configuration of an operator precedence parsing is stack $,input w $
 Advantages of operator precedence parsing:
1) It is easy to implement.
2) Once an operator precedence relation is made between all pairs of terminals of a

grammar ,the grammar can be ignored.
 Disadvantages of operator precedence parsing:
1) It is hard to handle tokens like the minus sign (-) which has two

different precedence.
2) Only a small grammar can be parsed using operator-precedence parser.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Consider Grammar:

 E → E+E | E-E | E*E | E/E | E^E | (E) | id

 Input string : id + id * id

+ - * / ^ id () $

+

-

*

/

^

id

(

)

$

.> .> <. <. <. <. <. .> .>

.> .> <. <. <. <. <. .> .>

.> .> .> .> <. <. <. .> .>

.> .> .> .> <. <. <. .> .>

.> .> .> .> <. <. <. .> .>

.> .> .> .> .> .> .>

<. <. <. <. <. <. <. =

.> .> .> .> .> .> .>

<. <. <. <. <. <. <.

$

Stack i/p string Action

$ <. id+id*id$ Shift

$id .> +id*id$ Pop

$ <. +id*id$ Shift

$+ <. id*id$ Shift

$+id .> *id$ Pop

$+ <. *id$ Shift

$+* <. id$ Shift

$+*id .> $ Pop

$+* .> $ Pop

$+ .> $ Pop

$ $ Accept

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Introduction to LR Parsing:

 An efficient bottom-up syntax analysis technique that can be used to parse a large class of CFG is

called LR(k) parsing.

 The ‘L’ is for left-to-right scanning of the input, the ‘R’ for constructing a rightmost derivation in

reverse, and the ‘k’ for the number of input symbols .

 Advantages of LR parsing:

 It recognizes all programming language constructs for which CFG can be written.

 It is an efficient non-backtracking shift-reduce parsing method.

 It detects a syntactic error as soon as possible.

 A grammar that can be parsed using LR method is a proper superset of a grammar that can be parsed

with predictive/LL(1) parser.

 Drawbacks of LR method:

 It is too much of work to construct a LR parser by hand for a programming language grammar. A

specialized tool, called a LR parser generator, is needed. Example: YACC.

 Types of LR parsing method:

 LR(0),SLR(1)- Simple LR ,Easiest to implement, least powerful.

 CLR(1)- Canonical LR ,Most powerful, most expensive.

 LALR(1)- Look-Ahead LR

 Intermediate in size and cost between SLR & CLR.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Construct LR Parse Table:
1. Obtain the augmented grammar.
2. Construct the canonical collection of LR items.
3. Draw the LR Automata.
4. Construct the parse table from LR Automata.
 Augmented grammar:
 If G is a grammar with start symbol S, then G', the augmented grammar for G, is G with

a new start symbol S' and production S'→S.
 The grammar which is obtained by adding 1 more production before start symbol is

called as augmented grammar.
 LR(0) item:
 An LR parser makes shift-reduce decisions by maintaining states to keep track of where

we are in a parse.
 An LR(0) item of a grammar G is a production of G with a dot at some position of the

body of RHS.
 A →XYZ
 LR(0) items A →.XYZ , A →X.YZ , A →XY.Z , A →XYZ.
 A →X.YZ indicates that we have just seen on the input a string derivable

from X and next to see a string derivable from YZ.
 Item A →XYZ. indicates that we have seen the body XYZ and that it

may be time to reduce XYZ to A.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 The production A→∈ generate only one item , A→.
 Function used to generate LR(0) item
1) Closure(I) [I set of items]
2) Goto(I,x) [x grammar symbol]
 Closure of item sets
 If I is a set of items for a grammar G, then CLOSURE(I) is the set of items constructed

from I by two rules:
1) Initially ,add every item in I to CLOSURE(I).I0=CLOSURE(S'→.S)
2) If A→𝛼.B𝛽 is in CLOSURE(I) and B→𝛾 is a production , then add the item B→.𝛾 to

CLOSURE(I),if it is not already there . apply this rule until no more new items can be
added to CLOSURE(I).

 Goto (I,x)
 Goto (A→ 𝛼.x𝛽,x)= (A→ 𝛼x.𝛽)
 Structure of the LR Parsing Table:
 The parsing table consist of two functions: 1.ACTION, 2.GOTO.
➢ ACTION function takes as argument a state I and a terminal or $.
 ACTION part contains shift & reduce of terminal.
 If x is a terminal & goto (I,x) =Ij then place Sj in ACTION.
 If parser accepts the input and finishes parsing ,then place acc in $

column of ACTION part.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 If the set I contain a final item then place ri under all the terminal in ACTION part. ri =
reduce by the production numbered i.

➢ GOTO function takes as argument a state I and a non terminal and contains only shift
operation of non terminal.

 If x is a non terminal & goto (I,x) =Ij then place j in GOTO.
 LR(0) grammar:
 The grammar G is said to LR(0) if its parse table is free from multiple entries.
 Ex 1:A →aA|b
 augmented grammar 𝐴′→ A
 A →aA|b

𝐴′→ .A

A →.aA

A →.b

I0

A
𝐴′→ A.

I1

a
A →a.A

A →.aA

A →.b

I2

b

A →b.

I3

A

A →aA.

I4

a

b

ACTION GOTO

a b $ A

0

1

2

3

4

S2 S3 1

Acc

S2 S3 4

r2 r2
r2

r1 r1 r1

 LR(0) Grammar

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Ex 2: S →AA
 A →aA
 A →b

 Augmented grammar
 𝑆′ → S
 S →AA
 A →aA
 A →b

𝑆′ → .S

S →.AA

A →.aA

A →.b

S

I0

S′→ S.
I1

S →A.A

A →.aA

A →.b

AI2

a
A →a.A

A →.aA

 A →.b

I3

A →b.

I4

A

S →AA.

I5

a

b

b

A

A →aA.

I6

a

b

ACTION GOTO

a b $ S A

0

1

2

3

4

5

6

S3 S4
1 2

Acc

S3 S4 5

S3 S4
6

r3 r3 r3

r1 r1 r1

r2
r2 r2

 LR(0) Grammar

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Ex 3: S →Aa |Bb
 A →d
 B →d

 Augmented grammar
 S′ → S
 S →Aa
 S →Bb
 A →d
 B →d

𝑆′ → .S

S →.Aa

S →.Bb

A →.d

B →.d

I0

S

S′→ S.
I1

A S→ A.a
I2

B
S→ B.b
I3

d

A →d.

B →d.
I4

a

S→ Aa.
I5

b

S→ Bb.

I6

ACTION GOTO

a b d $ S A B

0

1

2

3

4

5

6

S4
1 2 3

Acc

S5

S6

r3/r4
r3/r4 r3/r4

r3/r4

r1
r1 r1 r1

r2
r2 r2

r2

 Not LR(0) Grammar.

 Reduce Reduce conflict present.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Ex 4: E →E+T |T
 T →T*F|F
 F →id

 Augmented grammar
 E′ → E
 E →E+T |T
 T →T*F|F
 F →id

E′ → .E

E →.E+T

E →.T

T →.T*F

T →.F

F →.id

I0

E

E′→ E.

E →E.+T

I1

T

E→ T.

T→T.*F

I2

F

T→F.

id

F → id.

I3I4

+
E →E+.T

T →.T*F

T →.F

F →.id

I5

*

T→T*.F

F →.id

I6

T E →E+T.

T →T.*F

I7F

F

T→T*F.

I8

*

id

ACTION GOTO

id + * $ E T F

0

1

2

3

4

5

6

7

8

S4 1 2 3

S5
Acc

/S6r2 r2 r2 r2

r4 r4 r4 r4

r5 r5 r5 r5

7 3

S4 8

/S6
r1 r1

r1 r1

r3
r3 r3 r3

 Not LR(0) Grammar.

 Shift Reduce Conflict present.

id S4

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Stack Symbols i/p string Action

0 $ id*id$ Shift to 4
04 $id *id$ Reduce F→id
03 $F *id$ Reduce T→F
02 $T *id$ Shift to 6
026 $T* id$ Shift to 4
0264 $T*id $ Reduce F→id
0268 $T*F $ Reduce T→T*F
02 $T $ Reduce E→T
01 $E $ Accept

 LR-parsing algorithm:

 Initially, the parser has 0 on its stack,

where 0 is the initial state,and w$ in the

input buffer

 let a be the first symbol of w$;

 while(1)

 {let s be the state on top of the stack;

 if (ACTION[s, a] = shift t) {

 push t onto the stack; }

 else if (ACTION[s, a] = reduce (A→𝛽){

 pop 𝛽 symbols off the stack;

 let state t be on top of the stack;

 push GOTO[t, A] onto the stack;}

 else if (ACTION[s, a] = accept) break;

 else call error-recovery routine;

 }

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Conflicts in LR Parsing:
 1. Shift-reduce conflict :
 The parser cannot decide whether to shift or to reduce.
 If the same state has both shift & reduce option then there is a SR conflict. Ex:
 2.Reduce-reduce conflict :
 The parser cannot decide which of several reductions to make.
 If the same state contain more than one final item then there is a RR conflict . Ex:

E→ T.

T→T.*F

A →d.

B →d.

 The grammar is LR(0) if & only if it is free from both SR & RR conflict.
 Viable Prefixes:
 The prefixes of right sentential forms that can appear on the stack of a shift reduce parser

are called viable prefixes.
 A viable prefix is a prefix of a right-sentential form that does not continue past the right

end of the rightmost handle of that sentential form.
 Not all prefixes of right-sentential forms can appear on the stack.
 SLR parsing is based on the fact that LR(0) automata recognize viable prefixes
 Consider grammar :E →E+T |T , T →T*F|F , F →id
 Examples of Right sentential form : E⇒T ⇒T*F⇒T*id2⇒F*id2⇒id1*id2

 Examples of viable prefix : id1,F,T,T*,T*id2,T*F,E

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 SLR(1) Parser:
 The SLR method begins with LR(0) items and LR(0) automata.
 Constructing an SLR-parsing table.
 ACTION :
 (a) If [A →𝛼.a𝛽] is in Ii and GOTO(Ii ,a) = Ij , then set ACTION[i,a] to “Sj” ;

a=terminal.
 (b) If [A →𝛼.] is in Ii , then set ACTION[i,a] to “rj” for all a in FOLLOW(A);j is

reduction number,A≠ S′.
 (c) If [S′→S.] is in Ii, then set ACTION[i, $] to “accept”.
 If any conflicting actions result from the above rules, we say the grammar is not

SLR(1).
 GOTO :
 The GOTO transitions for state i are constructed for all non terminals A using the

rule: If GOTO(Ii , A) = Ij , then GOTO[i , A] = j.
 If SLR(1) parsing table is free from multiple entries then grammar called SLR

grammar.
 We usually omit the (1) after the SLR, since we shall not deal here with parsers

having more than one symbol of lookahead.
 Every SLR(1) grammar is unambiguous, but there are many

unambiguous grammars that are not SLR(1).

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Ex 1:
 S →Aa |Bb
 A →d
 B →d

 Augmented grammar
 S′ → S
 S →Aa
 S →Bb
 A →d
 B →d

𝑆′ → .S

S →.Aa

S →.Bb

A →.d

B →.d

I0

S

S′→ S.
I1

A S→ A.a
I2

B
S→ B.b
I3

d

A →d.

B →d.
I4

a

S→ Aa.
I5

b

S→ Bb.

I6

 Follow(S)={$}
 Follow(A)={a}
 Follow(B)={b}

ACTION GOTO

a b d $ S A B

0

1

2

3

4

5

6

S4
1 2 3

Acc

S5

S6

r3 r4

r1

r2

 Not LL(1) Grammar . First(Aa)∩ First(Bb)=d

 Not LR(0) Grammar . RR conflict present.

 But SLR(1) Grammar

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Ex 2:
 E →E+T |T
 T →T*F|F
 F →id

 Augmented grammar
 E′ → E
 E →E+T |T
 T →T*F|F
 F →id

E′ → .E

E →.E+T

E →.T

T →.T*F

T →.F

F →.id

I0

E

E′→ E.

E →E.+T
I1

T

E→ T.

T→T.*F

I2

F

T→F.

id

F → id.

I3I4

+
E →E+.T

T →.T*F

T →.F

F →.id

I5

*

T→T*.F

F →.id

I6

T E →E+T.

T →T.*F

I7F

F

T→T*F.

I8

*

id

ACTION GOTO

id + * $ E T F

0

1

2

3

4

5

6

7

8

S4 1 2 3

S5
Acc

S6r2 r2

r4 r4 r4

r5 r5 r5

7 3

S4 8

S6r1
r1

r3 r3 r3

 Not LL(1) grammar , Left recursive

 Not LR(0) Grammar , SR Conflict.

 But SLR(1) Grammar

id S4

 Follow (E)={$,+}
 Follow (T)={$,*,+}
 Follow (F)={$,*,+}

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Conflicts in SLR Parsing:
 1. Shift-reduce conflict :

A →𝛼.xB

B →𝛾.
 If follow(B)∩ x=∅, SR conflict in LR(0) but not in SLR(1).
 If follow(B)∩ x≠ ∅ SR conflict in both LR(0) & SLR(1).
 2.Reduce-reduce conflict :

A →𝛼.

B →𝛾.

 If follow(A)∩ follow(B) =∅, RR conflict in LR(0) but not in SLR(1).
 If follow(A)∩ follow(B) ≠ ∅ RR conflict in both LR(0) & SLR(1)
 The grammar is SLR if & only if it is free from both SR & RR conflict.

 Ex 3:
 S →AaAb|BbBa
 A→∈
 B→∈

 Follow (S)={$}
 Follow (A)={a,b}
 Follow (B)={a,b}

S′ → .S

S →.AaAb

S →.BbBa

A →.

B →.
I0

 Follow(A)∩ Follow(B)={a,b} ≠ ∅
 RR conflict in both LR(0) & SLR(1)
 Not LR(0) grammar.
 Not SLR(1) grammar.
 LL(1) grammar
 First(AaAb) ∩First(BbBa)=∅

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Ex 4:
 S →Aa|Ba
 A→d
 B→d
 Follow (S)={$}
 Follow (A)={a}
 Follow (B)={a}

S′ → .S

S →.Aa

S →.Ba

A →.d

B →.d

I0

d A →d.

B →d.

I4

 Follow (A)∩ Follow(B)={a} ≠ ∅
 RR conflict in both LR(0) & SLR(1)
 Not LR(0) grammar .
 Not SLR(1) grammar.
 Not LL(1) grammar
 First(Aa) ∩First(Ba)={d}

 Ex 5:
 S →Aa|bAc|dc|bda
 A→d
 Not LL(1) grammar
 First(Aa) ∩First(dc)={d}

S′ → .S

S →.Aa

S →.bAc

S →.dc

S →.bda

A →.d

I0

d S →d.c

A →d.
I4

 Follow(A)∩ c={c}
 SR conflict in both LR(0) & SLR(1)
 Not LR(0) grammar .
 Not SLR(1) grammar.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 SLR(1) is more powerful than LR(0)

 Every LR(0) grammar is SLR(1) but converse not true.

 The number of entries in LR(0) table ≥ number of entries in SLR(1) table .

 Both table differ only in ACTION part not GOTO part.

 SLR(1) is more efficient than LR(0).

 CLR(1) or LR(1) parser:

 LR(1) =LR(0) +1 Look ahead symbol

 LR(1) determines the reduction dependency on the LA symbol.

 The redundant reduction can be removed hence it is called canonical LR(1).

 LR(1) item:

 [A →𝛼. 𝛽,a],A →𝛼𝛽 is a production, 𝛽 is not ε,a is a terminal or right endmarker $.

 1 refers to the length of second component called lookahead of the item.

 The lookahead has no effect on item.

 [A →𝛼. ,a], is a reduction if next input symbol is a.

 The set of a’s will always be a proper subset of FOLLOW(A).

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Constructing LR(1) Sets of Items:

 The method for building the collection of sets of valid LR(1) items is same as the one

for building the canonical collection of sets of LR(0) items.

 We need only to modify the two procedures CLOSURE and GOTO.

 CLOSURE(I) {repeat

 for (each item [A → 𝛼. B𝛽,a] in I)

 for (each production B →γ in 𝐺′)

 for (each terminal b in FIRST(𝛽a))

 add [B →. γ ,b] to set I;

 until no more items are added to I;

 return I;}

 GOTO(I, X) {

 for (each item [A → 𝛼.X𝛽,a] in I)

 add item [A → 𝛼X.𝛽,a] to set J ;

 return CLOSURE(J); }

 void items(𝐺′) {

 initialize C to {CLOSURE [S′→.S,$]} ;

 repeat

 for (each set of items I in C)

 for (each grammar symbol X)

 if (GOTO(I, X) is not empty and

 not in C)

 add GOTO(I, X) to C;

until no new sets of items are added to C;

}

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Canonical LR(1) Parsing Tables:

 Algorithm : Construction of canonical-LR parsing tables.

 ACTION:

 (a) If [A → 𝛼. a𝛽,b] is in Ii and GOTO(Ii, a) = Ij , then set ACTION[i,a]to “shift j.”

Here a must be a terminal.

 (b) If [A → 𝛼. ,a] is in Ii, A≠ S′, then set ACTION[i,a] to “rj” ;j is reduction number.

 (c) If [S′→S.] is in Ii, then set ACTION[i, $] to “accept”.

 If any conflicting actions result from the above rules, we say the grammar is not

LR(1). The algorithm fails to produce a parser in this case.

 GOTO:

 The GOTO transitions for state i are constructed for all non terminals A using the

rule: If GOTO(Ii , A) = Ij , then GOTO[i , A] = j.

 A LR parser using this table is called a CLR(1) parser.

 If the table has no multiple entries then the given grammar is

called LR(1) grammar.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Ex 1:
 S →CC
 C →cC|d

 Augmented grammar
 S′ → S
 S →CC
 C →cC|d FIRST(S)={c,d},

 FIRST(C)={c,d}

S′ → .S,$

S →.CC,$

C →.cC,c/d

C →.d,c/d

S

S′ → S.,$

I0

I1

C
S→ C.C,$

C →.cC,$

C →.d,$

I2

c C →c.C,c/d

C →.cC ,c/d

C →.d,c/d

I3

d

C →d. ,c/d

I4

C

S→ CC.,$
I5

c C→c.C ,$

C →.cC,$

C →.d,$

I6

C →d.,$

I7

d

C
C →cC.,c/d

I8c

d

C

C →cC.,$

c

I9

d

ACTION GOTO

State c d $ S C

0

1

2

3

4

5

6

7

8

9

S3 S4
1

acc

S6 S7 5

S3 S4 8

r3 r3

2

r1

S6 S7 9

r3

r2 r2

r2

 CLR(1) Grammar

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Conflicts in CLR Parsing:
 1. Shift-reduce conflict :

A → 𝛼.a𝛽,b

B →𝛾. ,a
 Shift terminal ∩ reduction look ahead symbol≠ ∅,SR

conflict in LR(1)
 2.Reduce-reduce conflict :

A →𝛼.,a

B →𝛾.,a

 ri look ahead symbol ∩ rj look ahead symbol ≠ ∅ then its RR conflict in LR(1).

 The grammar is LR(1) if & only if it is free from both SR & RR conflict.

 Ex 2:
 S →Aa|bB
 A →aA|b
 B →b|a

S′ → .S,$

S →.Aa,$

S →.bB,$

A →.aA,a

A →.b,a

S

S′ → S.,$

I0

I1

A S → A.a,$

I2

b

S → b.B,$

A →b.,a

B →.b,$

B →.a,$
I3

 a ∩ a=a Shift reduce conflict present.
 The grammar is not LR(1)
 FOLLOW(A) ∩ {a}=a ,SR conflict

for both LR(0) &SLR
 Not LR(0), SLR grammar
 FIRST(Aa) ∩ FIRST(bB) =b
 Not LL(1) grammar

 The grammar is not LL(1) or LR as it is ambiguous.
 For string “ba” there are more than one parse tree.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Ex 3:
 S →Aa |Bb
 A →d
 B →d

𝑆′ → .S,$

S →.Aa,$

S →.Bb,$

A →.d,a

B →.d,b

I0

S

S′→ S.,$
I1

A S→ A.a,$
I2

B
S→ B.b,$

I3
d

A →d.,a

B →d.,b
I4

a

S→ Aa.,$
I5

b

S→ Bb.,$

I6

 a ∩b=∅ ,No R-R conflict present for CLR.

 The grammar is LR(1) or CLR

 FOLLOW(A) ∩FOLLOW(B)= ∅ ,No R-R

conflict for SLR

 The grammar is SLR .

 But for LR(0) R-R conflict present.

 The grammar is not LR(0)

 FIRST(Aa) ∩ FIRST(Bb) =d

 Not LL(1) grammar

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 LALR(1) Parser:
 Minimal LR(1) Automata.
 The Automata of CLR(1) parser may contain some states with same production part and

different look ahead part.
 Make all these state to single state by union of LA part & again draw the automata &

construct the parse table ,which called as LALR table.
 If there are no parsing action conflicts, then the given grammar is said to be an LALR(1)

grammar.
 The collection of sets of items are called LALR(1) collection.
 The SLR and LALR tables for a grammar always have the same number of states, and

this number is typically several hundred states for a language like C.
 The canonical LR table would typically have several thousand states for the same-size

language.
 CLR(1) is more powerful than LALR(1) & LALR(1) is more powerful than SLR(1).
 Every LALR(1) grammar is CLR(1) But every CLR(1) need not be LALR(1).
 If CLR(1) have RR conflict or may not have RR conflict ,still LALR(1) may have RR

Conflict . LALR(1) have SR conflict if and only if CLR(1) have SR conflict .
 The grammar which is not CLR also not LALR.
 Every SLR(1) grammar is LALR(1) but reverse may not true.
 Number of states in CLR(1) Automata≥LALR(1) Automata.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Ex 1:
 S →CC
 C →cC|d

 I3 and I6 are replaced by their union.
 I36: C →c.C,c/d/$
 C →.cC,c/d/$
 C →.d,c/d/$
 I4 and I7 are replaced by their union.
 I47: C →d.,c/d/$
 I8 and I9 are replaced by their union.
 I89: C → cC.,c/d/$

ACTION GOTO

State c d $ S C

0

1

2

36

47

5

89

S36 S47
1

acc

2

S36 S47 5

S36 S47

r3 r3
r3

r1

r2 r2 r2

 The grammar is LR(0),SLR,CLR(1)& LALR

 LALR parsing table is same as SLR table.

 The grammar is also LL(1).

89

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 LL(k) ≤LR(k)

 Set of all LL(0) CFG ⊂ Set of all LL(1) CFG ⊂ Set of all LL(2) CFG…

 Set of all LR(0) CFG ⊂ Set of all LR(1) CFG ⊂ Set of all LR(2) CFG…

 Set of all LL(k) CFG ⊂ Set of all LR(k) CFG.

 CLR(1) is more powerful efficient among all the parser.

 But it is very costly hence LL(1) & LALR(1) widely used in the real time compiler

construction.

 If one LL(1) grammar having no null production then its also SLR(1)

 Every LL(1) grammar is LALR(1),hence LR(1) as LALR(1) ⊂CLR(1)

 Power :LR(0)< SLR(1) <LALR(1) <CLR(1)

 Easy to implement: LR(0)>SLR(1)>LALR(1)>CLR(1)

 Grammar : Set of LR(0) CFG ⊂SLR(1) class ⊂LALR(1) class ⊂CLR(1) Class

 Language : Set of LR(0) Language ⊂SLR(1) class ⊂LALR(1) class ⊂CLR(1) Class

 Parser : LR(0)< SLR(1) <LALR(1)<CLR(1)

 Table Size :LR(0)=SLR(1)=LALR(1)≤CLR(1)

 Reduce entry in table: LR(0)>SLR(1)=LALR(1)>CLR(1)

 Number of state in Automata :LR(0)=SLR(1)=LALR(1)≤CLR(1)

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Relation between all parser

LR(0)

SLR(1)

LALR(1)

CLR(1)/LR(1)

LL(1)

Operator

Precedence

Parser

Unambiguous Ambiguous

CFG

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2003,Q57:Consider the grammar shown below.

 S→C C

 C→c C∣d
 This grammar is

 (A)LL(1) (B)SLR(1) but not LL(1)

 (C)LALR(1) but not SLR(1) (D)LR(I) but not LALR(1)

 Ans: (A)LL(1)

 GATE CS 2008,Q55:An LALR(1) parser for a grammar G can have shift-reduce (S-

R) conflicts if and only if

 (A)The SLR(1) parser for G has S-R conflicts

 (B)The LR(1) parser for G has S-R conflicts

 (C)The LR(0) parser for G has S-R conflicts

 (D)The LALR(1) parser for G has reduce-reduce conflicts

 Ans :(B)

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2005, Q60: Consider the grammar:

 S→(S)∣a
 Let the number of states in SLR (1), LR(1) and LALR(1) parsers for the grammar

be n1,n2 and n3 respectively. The following relationship holds good:

 (A)n1<n2<n3 (B)n1=n3<n2 (C)n1=n2=n3 (D)n1≥n3≥n2

 Number of state in Automata :LR(0)=SLR(1)=LALR(1)≤CLR(1)

 n1=n3 ≤ n2

𝑆′ → .S,$

S →.(S),$

S →.a,$

I0

S

S′→ S.,$

I1

(S→ (.S),$

S →.(S),)

S →.a,)

S→ a.,$

a I2

I3

S

S→ (S.),$

I4

(S→ (.S),)

S →.(S),)

S →.a,)

I5a

S→ a.,)

I6

)
S→ (S).,$

I7

S S→(S.),)

I8

(
a

S→(S).,)

)I9

 n2=10

 I2 ∪I5=I25

 I3 ∪I6=I36

 I4 ∪I8=I48

 I7 ∪I9=I79

 n3=6,n1=6

 Ans:

(B)n1=n3<n2
M

on
ali

sa
CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

	Slide 1
	Slide 2
	Slide 3: Syntax Analysis
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

