
Compiler Design

Chapter 2: Parsing

GATE CS PYQ

 by Monalisa
M

on
ali

sa
CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2010,Q38:The grammar S → aSa | bS | c is

(A) LL(1) but not LR(1)

(B) LR(1)but not LR(1)

(C) Both LL(1)and LR(1)

(D) Neither LL(1)nor LR(1)

 The LL(1) parsing table for the given grammar is:

a b c $

S S → aSa S → bS S → c

 As there is no multiple entries in LL(1) parsing table, the given grammar is LL(1).

 Every LL(1) is LR(1) also, so the given grammar is LL(1) as well as LR(1).

 Ans : (C) Both LL(1)and LR(1)M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2011,Q27: Consider two binary operators ‘↑’ and ‘↓’ with the precedence

of operator ↓ being lower than that of the operator ↑. Operator ↑ is right associative

while operator ↓, is left associative. Which one of the following represents the parse

tree for expression (7↓3↑4↑3↓2)?

 ↓: left associative, ↑:right associative

 7 ↓ 3 ↑ 4 ↑ 3 ↓ 2

 = (7 ↓ (3 ↑ (4 ↑ 3))) ↓ 2

 Ans: B

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2012,Q52: For the grammar below, a partial LL(1) parsing table is also presented

along with the grammar. Entries that need to be filled are indicated as E1, E2, and E3.  is the

empty string, $ indicates end of input, and,| separates alternate right hand sides of productions.

S → a A b B | b A a B | 

A → S

B → S

 The FIRST and FOLLOW sets for the non-terminals A and B are

(A) FIRST(A) ={a, b,}

= FIRST(B)

FOLLOW(A) = {a, b}

FOLLOW(B) = {a, b, $}

(B) FIRST(A) ={a, b, $}

FIRST(B) = {a, b, }

FOLLOW(A) = {a, b}

FOLLOW(B) = {$}

(C) FIRST(A) ={a, b, }

= FIRST(B)

FOLLOW(A) = {a, b}

FOLLOW(B) = ∅

(D) FIRST(A) ={a, b}

= FIRST(B)

FOLLOW(A) = {a, b}

FOLLOW(B) = {a, b}

FIRST FOLLOW

S a,b,  a,b,$

A a,b,  a,b

B a,b,  a,b,$

 Ans:A

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2012,Q53: For the grammar below, a partial LL(1) parsing table is also presented

along with the grammar. Entries that need to be filled are indicated as E1, E2, and E3.  is the

empty string, $ indicates end of input, and,| separates alternate right hand sides of productions.

S → a A b B | b A a B | 

A → S

B → S

 The appropriate entries for E1, E2, and E3 are

(A) E1:S →aAbB,A→S

E2:S →bAaB,B→S

E3: B→S

(B) E1:S →aAbB,S→

E2:S →bAaB,S→

E3:S →

(C) E1:S→aAbB, S→

E2: S→bAaB, S→

E3: B→S

(D) E1: A →S, S →

E2: B →S, S →

E3: B →S

FIRST FOLLOW

S a,b,  a,b,$

A a,b,  a,b

B a,b,  a,b,$

 S→ aAbB will go under column a.

 S→ bAaB will go under column b.

 S→ ε will go in E1, E2 and under column of $.

 E1 will have: S→ aAbB and S→ ε.

 E2 will have S→ bAaB and S→ ε.

 B→ S will go under {a, b, $}

 So E3 will contain B→ S.

 Ans: C

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2013,Q9: What is the maximum number of reduce moves that can be

taken by a bottom-up parser for a grammar with no epsilon- and unit-production (i.e.,

of type A → є and A → a) to parse a string with n tokens?

 (A) n/2 (B) n-1 (C) 2n-1 (D) 2n

 Maximum number of reduce moves that can be taken by Shift reduce parser / bottom

up parser for a grammar with no ∈ and unit production to parse a string of n token is

n-1.

 Ans : (B) n-1

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2013,Q40: Consider the following two sets of LR(1) items of an LR(1) grammar.

 Which of the following statements related to merging of the two sets in the corresponding

LALR parser is/are FALSE?

 1. Cannot be merged since look aheads are different.

2. Can be merged but will result in S-R conflict.

3. Can be merged but will result in R-R conflict.

4. Cannot be merged since goto on c will lead to two different sets.

 (A) 1 only (B) 2 only (C) 1 and 4 only (D) 1, 2, 3 and 4

 1.Two sets in LR(1) items can be merged if they differ with look ahead symbols,1 false.

 2.No reduction, so after merging it will not have SR conflict,2 false.

 3.No reduction , so after merging it will not have RR conflict,3 false

 4.Mearging possible, goto(c) will lead to one state.4 false

 Ans: (D) 1, 2, 3 and 4

X → c.X, c/d

X → .cX, c/d

X → .d, c/d

X → c.X, $

X → .cX, $

X → .d, $

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2014 Set-1,Q34: A canonical set of items is given below

 S → L.>R

 Q → R.

 On input symbol < the set has

(A) a shift-reduce conflict and a reduce-reduce conflict.

(B) a shift-reduce conflict but not a reduce-reduce conflict.

(C) a reduce-reduce conflict but not a shift-reduce conflict.

(D) neither a shift-reduce nor a reduce-reduce conflict.

 The input symbol is “<” which is not in canonical set of item, so it is neither a shift-

reduce nor a reduce-reduce conflict with reference to “<” symbol.

 if symbol “>” then it will be a SR conflict.

 Ans:(D) neither a shift-reduce nor a reduce-reduce conflict.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2014 Set-2,Q17: Consider the grammar defined by the following

production rules, with two operators ∗ and +

 S → T * P

 T → U | T * U

 P → Q + P | Q

 Q → Id

 U → Id

 Which one of the following is TRUE?

 (A) + is left associative, while ∗ is right associative

(B) + is right associative, while ∗ is left associative

(C) Both + and ∗ are right associative

(D) Both + and ∗ are left associative

 T ⟶ T * U, since T is left recursive, hence * is left associative.

 P ⟶ Q + P, here P is right recursive, so + is right associative.

 Ans: (B) + is right associative, while ∗ is left associative

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2015 Set-1,Q13: Which one of the following is True at any valid state in

shift-reduce parsing?

(A) Viable prefixes appear only at the bottom of the stack and not inside

(B) Viable prefixes appear only at the top of the stack and not inside

(C) The stack contains only a set of viable prefixes

(D) The stack never contains viable prefixes

 A handle is actually on the top of the stack.

 The prefixes of right sentential forms that can appear on the stack of a shift reduce

parser are called viable prefixes.

 So set of viable prefixes is in stack.

 Ans : (C) The stack contains only a set of viable prefixesM
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2015 Set-3,Q16: Among simple LR (SLR), canonical LR, and look-ahead

LR (LALR), which of the following pairs identify the method that is very easy to

implement and the method that is the most powerful, in that order?

 (A) SLR, LALR

(B) Canonical LR, LALR

(C) SLR, canonical LR

(D) LALR, canonical LR

 SLR is very easy to implement and CLR is most powerful method.

 Ans : (C) SLR, canonical LR

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2015 Set-3,Q31:Consider the following grammar G.

 S → F | H

 F → p | c

 H → d | c

 Where S, F and H are non-terminal symbols, p, d and c are terminal symbols. Which of the

following statement(s) is/are correct?

 S1: LL(1) can parse all strings that are generated using grammar G.

 S2: LR(1) can parse all strings that are generated using grammar G.

 (A) Only S1 (B) Only S2 (C) Both S1 and S2 (D) Neither S1 and S2

 The given grammar is ambiguous as there are two possible parse tree for string “c”.

 An Ambiguous grammar can neither be LL(1) nor LR(1).

 FIRST(F)∩FIRST(H)={c} not LL(1).

 R-R conflict is present , not LR(1).

 Ans: (D) Neither S1 and S2

S′ → .S,$

S →.F,$

S →.H,$

F →.p,$

F →.c,$

H →.d,$

H →.c,$

F →c.,$

H →c.,$

c

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2017 Set-1,Q17:Consider the following grammar:

 P→xQRS

 Q→yz∣z
 R→w∣ε
 S→y

 Which is FOLLOW(Q)?

 (A) {R} (B) {w} (C) {w, y} (D) {w, $}

 FOLLOW (Q) = FIRST (R)

 FIRST (R) = {w, ϵ}

 Since FIRST (R) = {ϵ}

 So FOLLOW (Q) = {w} ∪ FIRST(S)

 FIRST(S) = {y}

 FOLLOW (Q) = {w, y}

 Ans : (C) {w, y}

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2017 Set-2,Q6 :Which of the following statements about parser is/are

CORRECT?

 I. Canonical LR is more powerful than SLR.

II. SLR is more powerful than LALR.

III. SLR is more powerful than Canonical LR.

 (A) I only (B) II only (C) III only (D) II and III only

 The power in increasing order is: SLR < LALR < CLR

 Ans: (A) I only

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2017 Set-2,Q32: Consider the following expression grammar G:

 E → E - T | T

T → T + F | F

F → (E) | id

 Which of the following grammars is not left recursive, but is equivalent to G?

 LRG RRG

 A →A𝛼|𝛽 ⇒ A → 𝛽𝐴′

 ⇒ 𝐴′ → 𝛼𝐴′|𝜀
 E →TX

 X →-TX| ε

 T →FY

 Y →+FY| ε

 F → (E) | id

(A) E→E-T |T

 T→ T+F |F

 F → (E) | id

(B) E → TE'

E' → -TE' | ε

T → T + F | F

F → (E) | id

(C) E → TX

 X → -TX | ε

 T → FY

 Y → +FY | ε

 F → (E) | id

(D) E → TX | (TX)

 X → -TX |+TX| ε

 T → id

Ans : (C)

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2018,Q38: Consider the following parse tree for the

expression a#bcd#e#f, involving two binary operators $ and #.

 Which one of the following is correct for the given parse tree?

(A) $ has higher precedence and is left associative; # is right associative

(B) # has higher precedence and is left associative; $ is right associative

(C) $ has higher precedence and is left associative; # is left associative

(D) # has higher precedence and is right associative; $ is left associative

 Since $ will be evaluated before # so $ has higher precedence .

 Left $ in bcd will be evaluated first so it is left associative.

 # is right associative as the right one (e#f) will be evaluated first.

 $>#,$=left associative,#=right associative.

 Ans : (A) $ has higher precedence and is left associative;

 # is right associative

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2019,Q3: Which one of the following kinds of derivation is used by LR

parsers?

(A) Leftmost

(B) Leftmost in reverse

(C) Rightmost

(D) Rightmost in reverse

 Bottom up parser simulates reverse of right most derivation.

 LR parsers have Rightmost derivation in reverse.

 Ans :(D) Rightmost in reverse

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2019,Q19: Consider the grammar given below:

 S → Aa

 A → BD

 B → b|ε

 D → d|ε

 Let a, b, d and $ be indexed as follows:

 Compute the FOLLOW set of the non-terminal B and write the index values for the

symbols in the FOLLOW set in the descending order. (For example, if the FOLLOW

set is {a, b, d, $}, then the answer should be 3210).

 Answer_____.

 Follow(B) = First(D) ∪ Follow(A)

 Follow(B) = {d} ∪ {a} = {a,d}

 Ans : 31

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2019,Q43: Consider the augmented grammar given below:

S′ → S

S →<L>| id

L → L, S|S

Let I0 = CLOSURE ({[S′ → .S]}). The number of items in the set GOTO (I0, <) is

__________.

 The set GOTO (I0 , <) has 5 items

 Ans: 5

S′ → .S

S →.<L>

S →.id

I0

<

S →<.L>

L → .L, S

L → .S

S →.<L>

S →.idI2 M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2020,Q24: Consider the following grammar.

S → aSB| d

B → b
The number of reduction steps taken by a bottom-up parser while accepting the string

aaadbbb is _______.

 aaadbbb [1.S →d]

 aaaSbbb [2.B →b]

 aaaSBbb [3. S → aSB]

 aaSbb [4. B →b]

 aaSBb [5. S → aSB]

 aSb [6. B →b]

 aSB [7. S → aSB]

 S

 Ans : 7

a a a d b b b

S B

S

B

S

B

S
Stack i/p string Action

$ aaadbbb$ Shift
$a aadbbb$ Shift
$aa adbbb$ Shift
$aaa dbbb$ Shift
$aaad bbb$ Reduce S →d
$aaaS bbb$ Shift
$aaaSb bb$ Reduce B →b
$aaaSB bb$ Reduce S → aSB
$aaS bb$ Shift
$aaSb b$ Reduce B →b
$aaSB b$ Reduce S → aSB
$aS b$ Shift
$aSb $ Reduce B →b
$aSB $ Reduce S → aSB
$S $ Accept

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2021,Set-1,Q5:Consider the following statements.

 S1:Every SLR(1) grammar is unambiguous but there are certain unambiguous

grammars that are not SLR(1).

 S2:For any context-free grammar , there is a parser that takes at most O(n3) time to

parse a string of length n.

 Which one of the following options is correct?

 (A) S1 is true and S2 is false

 (B) S1 is false and S2 is true

 (C) S1 is true and S2 is true

 (D) S1 is false and S2 is false

 S1:True

 S2: Top down & bottom up parser time complexity O(n3) .True

 Ans: (C) S1 is true and S2 is true

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2021,Set-1,Q31:Consider the following context-free grammar where the set of

terminal is {a ,b ,c ,d ,f}

 S →daT | Rf

 T →aS | baT | ϵ
 R →caTR | ϵ
 The following is a partially-filled LL(1) parsing table.

 Which one of the following choices represents the correct combination for the numbered cells

in the parsing table(“blank” denotes that corresponding cell is empty)?

 (A) (1) S →Rf (2) S →Rf (3) T →ϵ (4) T →ϵ
 (B) (1) blank (2) S →Rf (3) T →ϵ (4) T →ϵ
 (C) (1) S →Rf (2) blank (3) blank (4) T →ϵ
 (D) (1) blank (2) S →Rf (3) blank (4) blank

a b c d f $

S (1) S →daT (2)

T T →aS T →|baT (3) T →ϵ (4)

R R →caTR R →ϵ

 (1) S →Rf

 (2) S →Rf

 (3) T →ϵ

 (4) T →ϵ

 Ans : (A)

FIRST FOLLOW

S {d,c,f} {c,f,$}

T {a,b,ϵ} {c,f,$}

R {c,ϵ} {f}

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2021,Set-2,Q51:Consider the following augmented grammar with {#, @,

<, >, a, b, c} as the set of terminal.

 S′ → S

 S →S#cS

 S →SS

 S →S@

 S →< S >

 S → a

 S → b

 S → c

 Let I0 = CLOSURE ({S′ → .S}). The number of items in the set GOTO (GOTO

(I0,<),<) is _________ .

S′ →.S

S →.S#cS

S →.SS

S →.S@

S →.< S >

S →.a

S →.b

S →.c

I0

<

S →<.S >

S →.S#cS

S →.SS

S →.S@

S →.< S >

S →.a

S →.b

S →.c

I2

<

 Ans : 8

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2022 | Question: 3
 Which one of the following statements is TRUE?
 (A)The LALR(1) parser for a grammar G cannot have reduce-reduce conflict if the

LR(1) parser for G does not have reduce-reduce conflict.
 (B) Symbol table is accessed only during the lexical analysis phase.
 (C) Data flow analysis is necessary for run-time memory management.
 (D)LR(1) parsing is sufficient for deterministic context-free languages.
 (A) If LR(1) have RR conflict or may not have RR conflict ,still LALR(1) may have RR

Conflict . LALR(1) have SR conflict if and only if LR(1) have SR conflict .False
 (B) It is the abstract data structure use by compiler to store all the information about identifiers

used in the program. Every phases of compiler interact with symbol table.
 Whenever an identifier is detected in any of the phases, it is stored in the symbol table. False
 (C) Data-flow analysis derive information about the flow of data along program execution

paths .Flow graph tells us about the possible execution paths.
 The compiler creates and manages a run-time environment in which it assumes its target

programs are being executed. Its not related with data flow analysis .False
 (D) Every LR(k) language is deterministic context-free. Every deterministic

context-free language is LR(1).
 Hence, LR(1) parsing is sufficient for DCFL . True
 Ans:(D)LR(1) parsing is sufficient for deterministic context-free languages.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2022 | Question: 19

 Consider the augmented grammar with {+,∗,(,),id} as the set of terminals.

 S′→S

 S→S+R|R

 R→R∗P|P

 P→(S)|id

 If I0 is the set of two LR(0) items {[S′→S.],[S→S.+R]},then goto(closure(I0),+) contains

exactly ______________ items.

S′ →S.

S →S.+R

I0

+

S → S+.R

R→.R∗P

R→.P

P→.(S)

P→.id

5

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2024 | Set 1 | Question: 16

 Which of the following is/are Bottom-Up Parser(s)?

 (A)Shift-reduce Parser (B)Predictive Parser

 (C)LL(1) Parser (D)LR Parser

 Classification of bottom-up parser

 Shift-Reduce Parsing

 Operator Precedency parser

 LR Parser
 LR(0) item: LR(0), SLR(1)

 LR(1) item: CLR(1),LALR(1)

 Ans : (A)Shift-reduce Parser, (D)LR Parser

 (B)Predictive Parser & (C)LL(1) Parser are top-down parserM
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2024 | Set 1 | Question: 28
 Consider the following grammar 𝐺, with 𝑆 as the start symbol. The grammar 𝐺 has three

incomplete productions denoted by (1),(2), and (3).
 𝑆→𝑑𝑎𝑇∣(1) 𝑇→𝑎𝑆|𝑏𝑇|(2) 𝑅→(3)∣𝜖
 The set of terminals is {𝑎,𝑏,𝑐,𝑑,𝑓}. The FIRST and FOLLOW sets of the different non-

terminals are as follows.
 FIRST(𝑆)={𝑐,𝑑,𝑓}, FIRST(𝑇)={𝑎,𝑏,𝜖}, FIRST(𝑅)={𝑐,𝜖}
 FOLLOW(𝑆)=FOLLOW(𝑇)={𝑐,𝑓,$}, FOLLOW(𝑅)={𝑓}
 Which one of the following options CORRECTLY fills in the incomplete productions?
 (A)(1) 𝑆→𝑅𝑓 (2) 𝑇→𝜖 (3) 𝑅→𝑐𝑇𝑅 (B)(1) 𝑆→𝑓𝑅 (2) 𝑇→𝜖 (3) 𝑅→𝑐𝑇𝑅
 (C)(1) 𝑆→𝑓𝑅 (2) 𝑇→𝑐𝑇 (3) 𝑅→𝑐𝑅 (D)(1) 𝑆→𝑅𝑓 (2) 𝑇→𝑐𝑇 (3) 𝑅→𝑐𝑅
 (A) 𝑆→𝑑𝑎𝑇∣ 𝑅𝑓 𝑇→𝑎𝑆|𝑏𝑇| 𝜖 𝑅→𝑐𝑇𝑅∣𝜖
 We can get same FIRST & FOLLOW
 (B) 𝑆→𝑑𝑎𝑇∣ 𝑓𝑅 𝑇→𝑎𝑆|𝑏𝑇| 𝜖 𝑅→𝑐𝑇𝑅∣𝜖
 FIRST(𝑆)={d,f}≠{𝑐,𝑑,𝑓}
 (C) 𝑆→𝑑𝑎𝑇∣ 𝑓𝑅 𝑇→𝑎𝑆|𝑏𝑇| 𝑐𝑇 𝑅→𝑐𝑅∣𝜖
 FIRST(𝑆)={d,f} ≠{𝑐,𝑑,𝑓}, FIRST(𝑇)={𝑎,𝑏,c} ≠{𝑎,𝑏,𝜖}
 (D) 𝑆→𝑑𝑎𝑇∣ 𝑅𝑓 𝑇→𝑎𝑆|𝑏𝑇| 𝑐𝑇 𝑅→𝑐𝑅∣𝜖
 FIRST(𝑇)={𝑎,𝑏,c} ≠{𝑎,𝑏,𝜖}
 Ans : (A)(1) 𝑆→𝑅𝑓 (2) 𝑇→𝜖 (3) 𝑅→𝑐𝑇𝑅

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2024 | Set 2 | Question: 30

 Consider the following context-free grammar where the start symbol is S and the set of

terminals is {𝑎,𝑏,𝑐,𝑑}.

𝑆→𝐴𝑎𝐴𝑏∣𝐵𝑏𝐵𝑎 𝐴→𝑐𝑆∣𝜖 𝐵→𝑑𝑆∣𝜖
The following is a partially-filled LL(1) parsing table.

 Which one of the following options represents the

CORRECT combination for the numbered cells in the parsing table?

 Note: In the options, "blank" denotes that the corresponding cell is empty.

 (A)(1) 𝑆→𝐴𝑎𝐴𝑏 (2) 𝑆→𝐵𝑏𝐵𝑎 (3) 𝐴→𝜖 (4) 𝐵→𝜖
 (B)(1) 𝑆→𝐵𝑏𝐵𝑎 (2) 𝑆→𝐴𝑎𝐴𝑏 (3) 𝐴→𝜖 (4) 𝐵→𝜖
 (C)(1) 𝑆→𝐴𝑎𝐴𝑏 (2) 𝑆→𝐵𝑏𝐵𝑎 (3) blank (4) blank

 (D)(1) 𝑆→𝐵𝑏𝐵𝑎 (2) 𝑆→𝐴𝑎𝐴𝑏 (3) blank (4) blank

 FIRST(S)={a,b,c,d}, FIRST(A)={c,𝜖}, FIRST(B)={d,𝜖}

 FOLLOW(S)={$,a,b}, FOLLOW(A)={a,b}, FOLLOW(B)={a,b}

𝑎 𝑏 𝑐 𝑑 $

𝑆 𝑆→𝐴𝑎Ab 𝑆→𝐵𝑏Ba (1) (2)

𝐴 𝐴→𝜖 (3) 𝐴→𝑐𝑆

𝐵 (4) 𝐵→𝜖 𝐵→𝑑𝑆

𝑎 𝑏 𝑐 𝑑 $

𝑆 𝑆→𝐴𝑎Ab 𝑆→𝐵𝑏Ba 𝑆→𝐴𝑎Ab 𝑆→𝐵𝑏Ba

𝐴 𝐴→𝜖 𝐴→𝜖 𝐴→𝑐𝑆

𝐵 𝐵→𝜖 𝐵→𝜖 𝐵→𝑑𝑆

 Ans: (A)

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2024 | Set 2 | Question: 55

 Consider the following augmented grammar, which is to be parsed with a SLR parser. The set

of terminals is {𝑎,𝑏,𝑐,𝑑,#,@}

𝑆′→𝑆 𝑆→𝑆𝑆|𝐴𝑎|𝑏𝐴𝑐|𝐵𝑐|𝑏𝐵𝑎 𝐴→𝑑# 𝐵→@

Let 𝐼0=CLOSURE({𝑆′→∙𝑆}). The number of items in the set GOTO(𝐼0,𝑆) is __________.

𝑆′→.𝑆

𝑆→.𝑆𝑆
𝑆→.𝐴𝑎
𝑆→ .𝑏𝐴𝑐
𝑆→ .𝐵𝑐
𝑆→ .𝑏𝐵𝑎

𝐴→.𝑑#

𝐵→.@

𝑆

𝑆′→𝑆.

𝑆→𝑆.𝑆
𝑆→.𝑆𝑆
𝑆→.𝐴𝑎
𝑆→ .𝑏𝐴𝑐
𝑆→ .𝐵𝑐
𝑆→ .𝑏𝐵𝑎

𝐴→.𝑑#

𝐵→.@

 The number of items in the set GOTO(𝐼0,𝑆) is 9.

 Ans: 9

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

