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4 Sectionl1: Engineering Mathematics hitps/imonalisacs.coriM

Discrete Mathematics: Propositional and first order logic. Sets, relations, functions, partial
orders and lattices. Monoids, Groups. Graphs: connectivity, matching, coloring.
Combinatorics: counting, recurrence relations , generating functions.

Linear Algebra: Matrices, determinants, system of linear equations, eigenvalues and
eigenvectors, LU decomposition.

Calculus: Limits, continuity and differentiability. Maxima and minima. Mean value theorem.
Integration.

Probability and Statistics: Random variables. Uniform, normal, exponential, poisson and
binomial distributions. Mean, median, mode and standard deviation. Conditional probability
and Bayes theorem.
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4 Discrete Mathematics: Propositional and first order logic. Sets, relations, functidhis."partiar™
orders and lattices.Monoids, Groups.Graphs: connectivity, matching, coloring.Combinatorics :
counting, recurrence relations , generating functions.

Chapter 1: Logic

Propositional Logic, Propositional Equivalences , Predicates and Quantifiers , Nested
Quantifiers , Rules of Inference , Introduction to Proefs.

Chapter 2 : Set Theory

Sets, relations, functions, partial orders and lattices.Monoids, Groups.
Chapter 3 : Graph Theory

Chapter 4 : Combinatorics
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4 Chapter 2 : Set Theory
2.1 Sets
2.2 Set Operations
2.3 Functions
2.4 Sequences and Summations
2.5 Cardinality of Sets
2.6 Relations and Their Properties
2.7 n-ary Relations and Their Applications
2.8 Representing Relations
2.9 Closures of Relations
2.10 Equivalence Relations
2.11 Partial Orderings
2.12 Groups
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/ 21 Sets https://monalisacs.corm\
DEFINITION 1 Aset is an unordered collection of objects, called elements or members of
the set. A set is said to contain its elements. We write a € A to denote that a is an element of
the set A. The notation a & A denotes that a is not an element of the set A.
It is common for sets to be denoted using uppercase letters. Lowercase letters are usually
used to denote elements of sets.
There are several ways to describe a set. One way is to list all the members of a set, For
example, the notation {a, b, c, d} represents the set-with the four elements a, b, ¢, and d. This
way of describing a set is known as the roster. method.
EXAMPLE 1 The set V of all vowels in the English alphabet can be written as V ={a,e,i,0,u}.
EXAMPLE 2 The set O of odd positiveintegers less than 10 can be expressed by O
={1,3,5,7,9}.
EXAMPLE 3 The set of positivetintegers less than 100 can be denoted by {1, 2, 3, ..., 99}.
Another way to describe a set is to use set builder notation.
We characterize all those elements in the set by stating the property or properties.
For instance, the set O of all odd positive integers less than 10 can be written as
O = {x | x is an odd positive integer less than 10}, or, specifying the universe

\_ @S the set of positive integers, as O = {x € Z* | x is odd and x < 10}. tps i youtube.com/@MonalisaCs




£ \We often use this type of notation to describe sets when it is impossible to list all the BT8EE
of the set.
N={0,1,2,3,...} the set of natural numbers
Z={..,-2,-1,0,1, 2,...}, the set of integers
Z*={1, 2, 3, ...}, the set of positive integers
Q={p/g|p€eZ qeZ and q # 0}, the set of rational numbers
R, the set of real numbers
R*, the set of positive real numbers
C, the set of complex numbers.
Intervals:When a and b are real numbers with.a < b, we write  [a, b] ={x|a<x<b}
[a,b)={x|a<x<b} (a b]={x|a<x<b} (a,b)={x|a<x<Db}
[a, b] is called the closed interval from ato b & (a, b) is called the open interval from a to b.
Sets can have other sets as members.
EXAMPLE 4 The set {N, Z, Q, R} is a set containing four elements, each of which is a set.
DEFINITION 2 Two sets are equal if and only if they have the same
elements . Therefore, if A and B are sets,then A and B are equal if and
only if vx(x € A < x € B). We write A =B if A and B are equal sets.
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£ EXAMPLE 5 The sets {1, 3, 5} and {3, 5, 1} are equal, because they have the saffié"8I8frts)
Note that the order in which the elements of a set are listed does not matter. Note also that it
does not matter if an element of a set is listed more than once, so {1, 3, 3, 3,5, 5, 5, 5} is the
same as the set {1, 3, 5} because they have the same elements.

THE EMPTY SET There is a special set that has no elements. This set is called the empty
set,or null set, and is denoted by @. The empty set can‘also be denoted by { }.

A set with one element is called a singleton set.

A common error is to confuse the empty set @ with-the set {@}, which is a singleton set.
Venn Diagrams

Sets can be represented graphically using Venn diagrams, named after the English
mathematician John Venn, who introduced their use in 1881.

In Venn diagrams the universal set U; which contains all the objects under consideration, is
represented by a rectangle.

Inside this rectangle, circles or other geometrical figures are used to represent sets.
Sometimes points are used to represent the particular elements of the set.

Venn diagrams are often used to indicate the relationships between sets.

EXAMPLE 6 Draw a Venn diagram that represents V, the set of vowels

& |n the Eng“Sh alphabet https://www.youtube.com/@MonaIisaCy




Subsets

DEFINITION 3 The set A is a subset of B if and only if
every element of A is also an element of B. We use the
notation A € B to indicate that A is a subset of the set B.
Showing that A is a Subset of B To show that A € B, show
that if x € A then x € B.

Showing that A is Not a Subset of B To show that A € B,

https://monalisacs.conzﬁ,

find a single x € A such that x € B.

EXAMPLE 7 The set of all odd positive integers less than
10 is a subset of the set of all positive integers less than 10,
the set of rational numbers is a subset of the set of real
numbers.

Venn Diagram Showing that A Is a Subset of B
THEOREM 1 For every set S, (i) @'<Sand (i) S € S.
Proof: To show that @ < S, we must show that

®B

VX(X € @ — X € S) is true.

Because the empty set contains no elements, it follows that x € @ is

always false.

X € @ — x € Sis always true, because its hypothesis is always false
_ and a conditional statement with a false hypothesis is true.
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£ Therefore, Vx(X € @ — X € S) is true. hips imenalisacs.comm
Note that this is an example of a vacuous proof.
When we wish to emphasize that a set A is a subset of a set B but that A + B, we write
A c B and say that A is a proper subset of B.
A'is a proper subset of Bifand only if v x(x EA—> X €E€B) AAX(XEB A X & A)
Showing Two Sets are Equal To show that two sets A and-B are equal, show that A € B
and B € A.
Sets may have other sets as members. For instance, we have the sets
A={0, {a}, {b}, {a, b}} and B = {x | x is a subset of the set {a, b}}.
These two sets are equal, that is, A = B. Also.note that {a} € A, buta & A.
The Size of a Set
DEFINITION 4 Let S be a set. If there are exactly n distinct elements in S,we say that S is a
finite set and that n is the cardinality.of S. The cardinality of S is denoted by |S|.
Remark: The term cardinality comes from the common usage of the term
cardinal number as the size of a finite set.
EXAMPLE 8 Let A be the set of odd positive integers < 10. Then |A| = 5.
EXAMPLE 9 Let S be the set of letters in the English alphabet. |S| = 26.
e EXAMPLE 10 Because the null set has no elements, it follows that |@| gtpg,www_youwbe_com,@Mona,isacy




4 DEFINITION 5 Aset is said to be infinite if it is not finite. hips imenalisacs.comm
EXAMPLE 11 The set of positive integers is infinite.
Power Sets
DEFINITION 6 Given a set S, the power set of S is the set of all subsets of the set S. The
power set of S is denoted by P(S)
EXAMPLE 12 What is the power set of the set {0, 1,2}?
Solution: P({0, 1, 2}) = {@, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}.
EXAMPLE 13 What is the power set of the empty.set? What is the power set of the set {@}?
Solution: The empty set has exactly one subset; namely, itself.
Consequently , P(@) = {0}.
The set {@} has exactly two subsets, namely; @ and the set {@} itself. P({@}) = {0, {0} }.
If a set has n elements, then its power Set has 2" elements.
Cartesian Products
DEFINITION 7 The ordered n-tuple (as, ay, . . ., an) iIs the ordered collection
that has a; as its first element, a, as its second element, . . ., and a, as its nth
element
Two ordered n-tuples are equal if and only if each corresponding pair of their

\ elements iS equal- https://www.youtube.com/@Monalisacy




In other words, (a;, a,, ...,a,) = (b, b,, ..., b)ifandonly if a,=b;,fori=1, 2, ... hps/monalisacs.comny
In particular, ordered 2-tuples are called ordered pairs.

The ordered pairs (a, b) and (c, d) are equal if and only ifa=cand b =d.

Note that (a, b) and (b, a) are not equal unlessa="Db

DEFINITION 8 Let A and B be sets.The Cartesian product of A and B, denoted by A x B, is the set
of all ordered pairs (a, b), where a € A and b € B. Hence, AXB ={(a, b)|acA A b € B}.

EXAMPLE 14 What is the Cartesian product of A = {1, 2} and B = {a, b, c}?

Solution: Ax B ={(1, a), (1, b), (1, ¢), (2, a), (2, b), (2,C)}.

A x Band B x Aare notequal, unlessA=@ orB=090 (sothat AxB=0)orA=B.

DEFINITION 9 The Cartesian product of the sets Aj,/A,, . .., A,, denoted by A; X A, x - - - x A,
Is the set of ordered n-tuples (a,, a,, . . ., a,), wherea, belongsto A, fori =1, 2,...,n. In other
words, A; x A, x - - - x A ={(a;,a, ...,a)par€ Afori=1,2,...,n}.

EXAMPLE 15 What is the Cartesian product AxBxC,where A={0,1},B={1,2},and C={0,1,2}?
Solution: A x B x C consists of all ordered triples (a, b, c), where a € A,b € B,

and c € C. Hence,Ax B x C ={(0, 1, 0),.(0, 1, 1), (0, 1, 2),(0, 2, 0), (O, 2, 1),
©,2,2,1,1,0),(1,1,1),(1,1,2),(1,2,0),(1,2,1),(1, 22}

We use the notation A% to denote A x A, the Cartesian product of the set A with itself.

Similarly, A=A xAx A, A*=AxAxAxA, and so on.

EXAMPLE 16 Suppose that A = {1, 2}. A2={(1, 1), (1, 2), (2, 1), (2, 2)} and
A3={(1,1,1),(1,1,2),(1,2,1),(1,2,2),(2,1,1),(2,1,2),(2,2,1), (2,2, 2)}.
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2.2 Set Operations
DEFINITION 1 Let A and B be sets. The union of the sets A and B, denoted by A U B, is the
set that contains those elements that are either in A or in B, or in both.
AuB={x|xeAvxeB}
EXAMPLE 1{1,3,5}u{1,2,3}=411, 2, 3,5}.
DEFINITION 2 Let A and B be sets. The intersection-ef the sets A and B, denoted by A N B,
IS the set containing those elements in both A and B.
ANB={x|xe AAxeB}
EXAMPLE 2 {1, 3,5} N {1,2,3}={1, 3k
DEFINITION 3 Two sets are called disjointyif their intersection is the empty set.
EXAMPLE 3 Let A={1,3,5,7,9} and B={2,4,6,8,10}.Because A N B=@, A and B are disjoint.

u U

: Q

A U B is shaded. A N B is shaded. https://www.youtube.com/@MonalisaCy




4" Principle of inclusion—exclusion. https://monalisacs.comm
|A| + | B| counts each element that is in A but not in B or in B but not in A exactly once,
and each element that is in both A and B exactly twice.
Thus, if the number of elements that are in both A and B is subtracted from |A| + | B],
elements in A N B will be counted only once.Hence,
|JAUB| = |A| +|B|-|AnB].
DEFINITION 4 Let A and B be sets. The difference ofAjand B, denoted by A - B, is the set
containing those elements that are in A but not in B/ The difference of A and B is also called the
complement of B with respect to A.
The difference of sets A and B is sometimes denoted by AAB.A-B={x | xEA A x & B}.
EXAMPLE 4 The difference of {1,3,5} and-{1,2,3} is the set {5}; that 1s, {1,3,5}- {1,2,3}= {5}.
DEFINITION 5 Let U be the universal set.“The U
complement of the set A, denoted by 4, is'the ‘

complement of A with respect to U..Therefore, the
complement of the set Ais U - A.

A={x| x€eU|x¢gA}

A-B=ANB

EXAMPLES Let A={a, e, i, 0, u} ,U=All Alphabet
N A={b,c,d f g hj, kI, mnnpqrstvwx,y,z}

A — B is shaded.

https://www.youtube.com/@Monalisacy




https://monalisacs.corm\

Table 1 : Set Identities
Identity Name
ANU=A AUuQg=A Identity laws
AuU=U ANQg=0 Domination laws
AUA=A ANA=A Idempotent laws
@: A Complementation law
AUB=BUA ,ANB=BNA Commutative laws
AuBUC)=(AuB)UC ,ANBNC)=(ANB)AC Associative laws
AuBNC)=(AUBNAUC),ANBUC)=(ANB)UANC) Distributive laws
ANB=AUB ,AUB=A NB De Morgan’s laws
AUANB) =A AN(AUB)=A Absorption laws
AUA=UANA =0 Complement laws

K https://www.youtube.com/@ Monalisacy




4 EXAMPLE 6 Use set builder notation and logical equivalences to establish the it Tyg" ™
Morgan law A N B=A U B.
Solution: We can prove this identity with the following steps.

ANnB ={x|x&AN B} by definition of complement
={x|~(x€ (AN B))} by definition of does not belong symbol
={x|~(xe AAxeB)} by definition of igteksection
={x|~(xeA)v(xeB)} by thefirst DefMqrgan law for logical equivalences
={x|x&Avx¢&B} by definition“dfdoes not belong symbol
={x|x€eAVXx€EB} by definition of complement
={x|x€ AU B} by definition of union
=AUB by meaning of set builder notation

EXAMPLE 7

Let A, B, and C be sets. Show that4uU (BN C) = (C U B) n A.

Solution: AU (BNC)=An(BNC) by the first De Morgan law
=AN(BuCl) by the second De Morgan law
=(BUC)NA=(CUB)NA by the commutative law.

Set identities can also be proved using membership tables.

https://www.youtube.com/@ MonalisaCy




A EXAMPLE 8 Use a membership table to show that A n (BU C) = (A N B) U (A n E/menalisacs.comn
» Solution: Because the columns for A n (BU C) and (A n B) U (A N C) are the same, the

identity is valid. TABLE 2 A Membership Table for the Distributive Property.
A B C BUC AN(BUC) ANB ANC (ANB)U(ANC)
1 1 1 1 1 1 1 1
1 1 0 1 1 1 0 1
1 0 1 1 1 0 1 1
1 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0
0 1 0 | 0 0 0 0
0 0 | | 0 0 0 0
0 0 0 0 0 0 0 0

- ANBNC={0}

e Generalized Unions and Interséctions

« EXAMPLE 9 Let A ={0,2,4,6,8}, B ={0,1,2,3,4}, and C = {0,3,6,9}.
Whatare AUBUCandANBNC?

» SolutiontAuBuUC={0,1,2,3,4,6,8, 9}.

https://www.youtube.com/@ MonalisaCy




4 DEFINITION 6 The union of a collection of sets is the set that contains those elBfr&T T ELe™
are members of at least one set in the collection.

We use the notation A, UA, U - - - UA, :U:;lAi to denote the union of the sets A;, A, ...., 4,.

DEFINITION 7 The intersection of a collection of sets is the set that contains those elements
that are members of all the sets in the collection.

We use the notation A, N A, N - - - NA, :ﬂ:; , 4; 1o denote the intersection of the sets A,
A, ....A4,

K https://www.youtube.com/@ Monalisacy




https://monalisacs.corm\

2.3 Functions
DEFINITION 1 Let A and B be nonempty sets. A function f from A to B is an assignment of
exactly one element of B to each element of A.\We write f () = b if b is the unigue element of
B assigned by the function f to the element a of A.If f is a function from A to B, we write
f:A— B.
Functions are sometimes also called mappings or .
transformations.
The Function f Maps A to B.
DEFINITION 2 If f is a function from A to B, we¢&Sa

that A 1s the domain of f and B is the codomain.of'f.
If f (a) = b, we say that b is the image of a and-a is a preimage of b. The range, or image, of f
is the set of all images of elements of A.If f1s a function from A to B, we say that f maps A to B.
Two functions are equal when they have the same domain, have the same codomain, and map
each element of their common domain to the same element in their common codomain .
Number of Function possible from A to B= |B|/A

EXAMPLE 1 Let f: Z — Z assign the square of an integer to this integer.

Then, f (x) = x2, where the domain of f is the set of all integers, the codomain

of f is the set of all integers that are perfect squares, namely, {0, 1, 4,9, ... }.

https://www.youtube.com/@Monalisacy




4 DEFINITION 3 Let f, and f, be functions from A to R. Then f, + f, and f,f, are alse"famEtion
from A to R defined for all x € A by

(fy + £)(x) = f,(X) + f(%),
(f,£) (%) = 1,00F,().

EXAMPLE 2 Let f, and f, be functions from R to R such that f,(x) = x* and f,(x) = x - x>. What
are the functions f, + f, and f,f,?

Solution: From the definition of the sum and product of functions, it follows that

(fi + £)(x) = fi(x) + fo(x) = x* + (x - x*) = x

(Fifo)(x) = X2 (x - X*) = x° - X°.

DEFINITION 4 Let f be a function fromrA-to B and let S be a subset of A. The image of S

under the function f is the subset of B that'consists of the images of the elements of S. We
denote the image of S by f(S), so f(S)=1{t | s €S (t =f (s))}.

We also use the shorthand {f (s) | s € S} to denote this set.
EXAMPLE3 LetA={a, b, ¢, d, e}and B={1, 2, 3, 4} with
fla)=2,f(b)=1,f(c)=4,f(d)=1,and f (e) = 1.

The 1image of the subset S = {b, ¢, d} is the set f (S) = {1, 4}.

\ https://www.youtube.com/@Monalisacy




4 One-to-One and Onto Functions hitps:/imonalisacs.com

Some functions never assign the same value to two different domain elements. These
functions are said to be one-to-one.

DEFINITION 5 A function f is said to be one-to-one, or an injunction, if and only if

f (a) = f (b) implies that a = b for all a and b in the domain of f. A function is said to be
Injective if it is one-to-one ae

One to one function A—B possible if |A|< |B|

Number of one to one functions possible A—B =FP,,

If |A|=|B|=n then number of one to one functions-possible n!
EXAMPLE 4 Determine whether the function f from {a, b, c, d} de

to {1, 2, 3,4,5}withf(a)=4,f(b) =51f(c)=1,andf(d) =3 is

one-to-one.

Solution: The function f is one-to-one because f takes on different values at domain.

EXAMPLE 5 Determine whether the function f (x) = x2 from the set of
integers to the set of integers is one-to-one.

Solution: The function f (x) = x2 is not one-to-one because, for instance,
f(1)=1(-1) =1,but1 #-1.

bhe

c®

® |

L )

e3

e 4

®5

\«_ The function f (x) = x? with its domain restricted to Z* is one-to-one.  nhips/wwwyouiube.com@monalisacs /




<~ EXAMPLE 6 Determine whether the function f (x) = x + 1 from the set of real ntimberg=te ™\
itself is one-to one.
Solution: The function f (x) = x + 1 is a one-to-one function. x + 1 =y + 1 when x #y.
EXAMPLE 7 If there are exactly 120 one to one functions possible from A to B then Which
of the following is not true .(I)|A|=5,|B|=5 (1) |Al|=4,|B|=5

(1IN|A[=3,|B[=6 (IV)IAI=5,[B[=4  (V)|A]=3,|BI=10

|
Solution: (I)5P5:(55'5)'=120 True  (I1)°P,=120 True (I1I) 5P,=120
(IV) |A|>|B| not one to one (V) 19P,=720 not-true

DEFINITION 6 A function f from A to B is called.onto, or a surjection, if and only if for
every element b € B there is an element a e*A'with f (a) = b. A function f is called surjective if
it is onto.

Onto functions A—B possible if |B|< |A|

If |A|=|B| then every one to one function from A —B is also onto and vice versa.

If |A|=|B|=n then number of onto functions from A—B is n!.

If |JA|=m and |[B|=n (m>n) then numbers of onto functions possible from A —B is
n™-nc;(n-1)"™+ nc,(N-2)™ - neg(N-3)M +.....-)" ncy_ ()™

EXAMPLE 8 |A|= 6,|B|=3 then how many onto functions are possible A -B

Solution: m=6 n=3 ,Numbers of onto functions possible

36- 3¢4(3-1)% + 3¢, (3-2)% =729-3*64+3=732-192=540

& https://www.youtube.com/@MonaIisaCy
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EXAMPLE 9 |AJ=n and B=2 (n>2) then number of onto functions possible from"&"=B5 <™\
Solution: 2"- 2¢4(2-1)"= 2"- 2¢,(2-1)"=2"- 2

EXAMPLE 10 How many ways we can assign 5 employes to 4 projects so that every employ
Is assigned to only one project and every project is assigned by at least one employe.

Solution: Number of ways possible 4°- 4¢,(4-1)°>+ 4c¢,(4-2)°- 4c5(4-3)°> a®

=1024-4*243+6*32-4 o o
=1024-972+192-4=1216-976=240

EXAMPLE 11 Let f be the function from {a, b, ¢;d¥to {1, 2, 3} defined ¢ ° °2
byf(@)=3,f(b)=2,f(c)=1, and f (d) = 3. Isfanonto function? de ~ 03

Solution: Because all three elements of the.codomain are images of elements in the domain,
we see that f is onto.

EXAMPLE 12 Is the function f (x) = x2from the set of integers to the set of integers onto?
Solution: The function f is not onto.because there is no integer x with x2 = -1, for instance.
EXAMPLE 13 Is the function f (x) = x + 1 from the set of integers to the

set of integers onto?

Solution: This function is onto , because for every integer y there is an
integer x such thatf (x) =yifx+1=y.

https://www.youtube.com/@MonalisaCy
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DEFINITION 7 The function f is a one-to-one correspondence, or a bijection, if it is both

(b)
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el

e?

®3

(c)  One-to-one,
and onto
ae ol

be o2
ce e3
de o4

(d) Neither one-to-one
nor onto

ae el

be o2

ce e3

A\

de o4

one-to-one and onto. We also say that such afunetion is bijective.

Bijection functions A—B possible if |[A|= |B]
If |A|=|B|=n then number of Bijection possible =n!

EXAMPLE 14 Let f be the function from {a, b, ¢, d}to {1, 2, 3, 4} with f (a) =4, f (b) = 2, f (c)
=1, and f (d) = 3. Is f a bijection?

Solution: The function f is one-to-one and onto. Hence, f is a bijection.

Suppose that f is a function from a set A to itself. If A 1s finite, then fis
one-to-one if and only if it is onto.

ttps://manalisacs.com’
(e) h[&]ot a function

ae

be
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4" Let A be a set. The identity function on A is the function 1, : A —A, where 1,(x) =XTOrairKER)
The identity function iz, is the function that assigns each element to itself.
The function 1, is one-to-one and onto, so it is a bijection.
Inverse Functions and Compositions of Functions
DEFINITION 8 Let f be a one-to-one correspondence from the set A to the set B. The inverse
function of f is the function that assigns to an element b belonging to B the unique element a in
A such that f (a) = b. The inverse function of f is denotedby f -1. Hence, f -1(b) = a when
f(a)=Dh.
Be sure not to confuse the function f -1 with the‘function 1/f .
If a function f is not a one-to-one correspondence, we cannot define an inverse function of f .
If f is not one-to-one, some element b in.the codomain is the image of more than one element
in the domain.
If f is not onto, for some element b-in the codomain, no element a in the domain exists for
which f (a) = b.
A one-to-one correspondence is called invertible because we can define
an inverse of this function.
A function is not invertible if it is not a one-to-one correspondence,

\_ because the inverse of such a function does not exist. ntps:hvns youtube com/@MonalsaCS




/" The Function f 1Is the Inverse of Function f . [y Mesiimonalisacs.com’

EXAMPLE 15 Let f be the function from {a, b, c} to ’
{1, 2, 3} such thatf (a) =2, f (b) =3, and f (c) = 1.

Is f invertible, and if it is, what is its inverse? £
Solution: The function f is invertible because it is a Q
one-to-one correspondence. f

The inverse function f-1, f-1(1) =c¢, f-1(2) = a, and f1(3) = b.
EXAMPLE 16 Let f: Z - Z be such that f (x) =x+ 1. Is finvertible, and if it is, what 1s its
inverse?

Solution: The function f has an inverse because it is a one-to-one correspondence,

So that y =x+ 1. Then x = y - 1. This i means that y - 1 is the unique element of Z that is sent to
y by f. Consequently, f1(y) =y - 1.
EXAMPLE 17 Let f be the function from R to R with f (x) = x2. Is f invertible?

Solution: Because f (-2) = f (2) = 4, f 1s not one-to-one. If an inverse
function were defined , it would have to assign two elements to 4.

K Hence, f iS not inVertible. https://www.youtube,com/@Monalisacy




A DEFINITION 9 Let g be a function from the set A to the set B and let f be a funétisT e <™
the set B to the set C. The composition of the functions f and g, denoted forall a € Aby f- g,

Is defined by (f - g)(a) = f (g(a)).

To find (f - g)(a) we first apply the function g to a to obtain g(a) and then we apply the
function f to the result g(a) to obtain (f - g)(a) = f (g(a)).

The composition f - g cannot be defined unless the range of g is a subset of the domain of f.
The commutative law does not hold for the composition of functions, (f> g) #(g ° f)

The Composition of the Functions fand g.
(f © g)a)

https://www.youtube.com/@Monalisacy




A EXAMPLE 18 Let g be the function from the set {a, b, c} to itself such that g(a)"= B gBY <™
c, and g(c) = a.Let f be the function from the set {a, b, c} to the set {1, 2, 3} such that f (a) =
3,f(b) =2,and f (c) = 1. What is the composition of f and g, and what is the composition of g
and f ?

Solution: (f - g)(a) = (g9(a)) =T (b) =2,(f° g) (b) =T (9(b)) =T (c) = 1,
(feg)(c) =f(g(c)) =f(a) =3.
g o fis not defined, because the range of f is not a subset of the domain of g.
EXAMPLE 19 Let f and g be the functions from the set of integers to the set of integers
defined by f (x) = 2x + 3 and g(x) = 3x + 2. What-isthe composition of f and g? What is the
composition of g and f ?
Solution: (feg)(X) =f(g(x)) =f(3x+2)=2(8x+2) +3=6x+7
And (g °f)(X)=g(f (x)) =g(2x + 3) =3(2x + 3) + 2 = 6x + 11.
When the composition of a function.and its inverse is formed, in either order, an identity
function is obtained.
When f (a) = b, and f -1(b) = a. Hence,(f 1> f)(a) = f -1(f (a)) =f 1(b) = a,
and (fo f-1)(b) =f (f 1(b)) =f (a) = b.
Consequently f 1o f=1, and fo f-! = 15, where t, and (; are the identity
\_ functions on the sets A and B, (f )= ntps: i youtube com/@Monalisacs




4 The Graphs of Functions ntps:/imonalisacs com/
DEFINITION 10 Let f be a function from the set Ato the set B. 3.9 (3,90
The graph of the function f is the set of ordered pairs {(a, b) | a
e Aand f (a) = b}.

EXAMPLE 20 Display the graph of the function f (x) = x*> from

the set of integers to the set of integers. 0 (2.4) (2.4)e
Solution: (x, f (x)) = (x, x*), The Graph of f (x) = x? fromZ t0.Z.

DEFINITION 11 The floor function assigns to the, real number
X the largest integer that is less than or equal tox..The value of the |
floor function at x is denoted by |x]. The ceiling-function assigns to 0.0)

the real number x the smallest integer that is'greater than or equal to x. The value of the ceiling
function at x is denoted by [x].

The floor function is often also called the greatest integer function. It is denoted by [x] .

These are some values of the floor-and ceiling functions:

E|=O,E]=1,l—%|=—1,[—ﬂ=0,[3.1J=3,[3.1]=4,[7J=7,[7]=7

Useful Properties of the Floor and Ceiling Functions.
(n 1s an integer, X 1s a real number)
(la) [x] =nifandonlyifn<x<n+1
K (1b) [X] =N If and Only If nN-1<x <n https://www.youtube.com/@Monalisacy
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/ (2) X-1< li <x< [X] <x+1 https://monalisacs.corm\
(3a) [—x] = — [x] (3b) [=x] = — [x]
(4a) |x + n]| = [x]+n (4b) [x + n]=[x]+n
Factorial function f: N — Z+,denoted by f (n) = n!.
fn)=1-2---(n-1)-nfand f(0) = 0! =1].
EXAMPLE 21 We havef (1) =1'=1,f(2)=2!=1-2=2,
f(6)=61=1-2-3-4-5.6=720,
Partial Functions
DEFINITION 12 A partial function f from a set‘Ato a set B is an assignment to each element
a in a subset of A, called the domain of definition of f, of a unique element b in B. The sets A
and B are called the domain and codomain.of f , respectively. We say that f is undefined for
elements in A that are not in the domain of definition of f . When the domain of definition of f
equals A, we say that f is a total function.
A program may not produce a correct value because evaluating the function
may lead to an infinite loop or an overflow.
EXAMPLE 22 The function f : Z — R where f (n) = Vn is a partial function
from Z to R where the domain of definition is the set of nonnegative integers.

K https://www.youtube.com/@Monalisacy




2 . 4 Seq uences an d S umm ati ons https://monalisacs.corm\

Sequences
A sequence is a discrete structure used to represent an ordered list. For example, 1, 2, 3,5, 8 is
a sequence with fivetermsand 1, 3,9, 27,81, ..., 3n,...isan infinite sequence.

DEFINITION 1 A sequence is a function from a subset of the set of integers to a set S. We
use the notation a, to denote the image of the integer n,We call a, a term of the sequence.

EXAMPLE 1 Consider the sequence {a,}, where a; :% T he list of the terms of this sequence,

beginning with a,, namely,a,,a,,a5,a,, ....,starts with.1, % : % Cee

DEFINITION 2 A geometric progression is.asequence of the form a, ar,ar?, ..., ar", ...
where the initial term a and the common ratie.r are real numbers.

A geometric progression is a exponential function f (x) =ar*.

To find the sum of finite (n) terms of a GP,

S,=a(m-1)/(r-1)

[OR]S,=a(l-mM/(@-r1),ifr#1.

S,=an,ifr=1.

To find the sum of infinite terms of a GP,

S=al(l-n),if|r<1

https://www.youtube.com/@Monalisacy




4 DEFINITION 3 An arithmetic progression is a sequence of the form a,a + d,a +" 2" AH
.where the initial term a and the common difference d are real numbers.

An arithmetic progression is a linear function f (x) = dx + a.

Sum =n/2 x [2a + (n-1)d]

If a, is known: S =n/2 x [a,+a,]

These finite sequences are also called strings.

This string is also denoted by a,a, . . . a,.

The length of a string is the number of terms in thisstring.

The empty string(A), 1s the string that has no terms. The empty string has length zero.

DEFINITION 4 A recurrence relation for'the sequence {a,} i1s an equation that expresses a, in
terms of one or more of the previous terms of the sequence, namely, ay, a,, .. ., a,_,, for all
integers n with n 2 n,, where n, 1s.a nennegative integer. A sequence is called a solution of a
recurrence relation if its terms satisfy the recurrence relation.
EXAMPLE 2 Let {a,} be a sequence that satisfies the recurrence relation
a,=a,,+3forn=1,2,3,...,and suppose that g, = 2.
What are a,, a,, and a;?

N Solution: ay=a,+3=2+3=5. 0,=5+3=8anda;=8+3 =11. tps: e youtube. com/@MonalisaCS




A EXAMPLE 3 Let {a,} be a sequence that satisfies the recurrence relation a, = a, "4 35t 'L
2,3,4,...,and suppose that a, = 3 and a, = 5. What are a, and a,?
Solutzon 02—01 a,=5-3=2anday=0,-0,=2-5=-3.
The initial conditions for a recursively defined sequence specify the terms that precede the
first term where the recurrence relation takes effect.
DEFINITION 5 The Fibonacci sequence, f,, f;, f,, ...,i1S.defined by the initial conditions f,=0,
f,=1,and the recurrence relation f,=f_;+ f , for n =2{3,4,+7.
EXAMPLE 4 Find the Fibonacci numbers f,.f5.f4:fs, and f, the initial conditions f,=0 and f,=1
Solution:fy=f,+f,=1+0=1, L=h+tfizl+1=2,

fa=fi+f,=2+1=3, fs=farf3=3+2=5, fe=fs+f,=5+3=8.
We say that we have solved the recurrence relation together with the initial conditions when
we find an explicit formula, called a closed formula,for the terms of the sequence.
EXAMPLE 5 Solve the recurrence relation and initial condition a,=a, +3 for n=1,2,3,....,and
suppose that a, = 2.
Solution: Starting with the initial condition a, = 2, and working upward until we reach a, to
deduce a closed formula for the sequence.
a,=2+3 a;=(2+3)+3=2+3-2
=(2+2-3)+3=2+3-3..
K an = an-l + 3 = (2 + 3 . (n - 2)) + 3 = 2 + 3(” - 1) https://www.youtube.com/@Monalisacy




We can also successively apply the recurrence relation starting with the term a,, atetAvorkiag™\
downward until we reach the initial condition a, = 2 to deduce this same formula.
a,=a,,+3 =(a,,+3)+3=0,,+3-2

=(a,,+3)+3-2=0,,+3-3 ...

=a,+3(n-2)=(a,+3)+3(n-2)=2+3(n-1).

The technique used in Example is called iteration. We-have iterated, or repeatedly used,the
recurrence relation.

The first approach is called forward substitution —we found successive terms beginning with
the initial condition and ending with a,.

The second approach is called backward substitution, because we began with a, and iterated
to express it in terms of falling terms of the sequence until we found it in terms of a,.
EXAMPLE 6 Find formulae for the sequences with the following first five terms: (a) 1, 1/2,
1/4,1/8,1/16 (b) 1,3,5,7,9 (¢) 1,=1, 1, -1, 1.

Solution: (a) The sequence with a,=1/2"n=0,1,2,....

This is a geometric progression with a =1 and r = 1/2.

(b) Each term is obtained by adding 2 to the previous term. The sequence with a, = 2n + 1,
n=0,1,2,....Thisisan arithmetic progression witha=1and d = 2.

(c) The terms alternate between 1 and -1. The sequence with a, = (-1)",

n=0,1,2....This sequence is a geometric progression witha=1andr=-1.
https://www.youtube.com/@l\/lonalisacy




A EXAMPLE 7 Conjecture a simple formula for a, if the first 10 terms of the sequéfitEd 121"
1,7,25,79,241,727, 2185, 6559, 19681, 59047.

Solution: this sequence are generated by a formula involving 3".
Comparing these terms with the corresponding terms of the sequence {3"}, we notice that the
nth term 1s 2 less than the corresponding power of 3.
a,=3"-2for 1 <n <10 and conjecture that this formula holds for all n.

TABLE 1 Some Useful Sequences.
nth Term First 10 Terms

n? 1,4,9, 16, 25, 36,49, 64, 81, 100, ...
n> 1,8,27,64, 125,216, 343,512,729, 1000, ...
n? 1, 16, 81, 256,625, 1296, 2401, 4096, 6561, 10000, ...
2" 2,4,8,16,32,64, 128, 256, 512, 1024, . ..
3" 3,9,27,81,243,729, 2187, 6561, 19683, 59049, . ..
n! 1,2,6,24, 120, 720, 5040, 40320, 362880, 3628800, . ..
In 1,1,2,3,5,8,13,21,34,55,89, ...

https://www.youtube.com/@ Monalisacy




/ Summatlons https://monalisacs.con?\
ap+ap.y, - - -, T8, We use the notation X7_,, a; , Xp<j<n @
Here, the varlablej Is called the index of summation.
Here, the index of summation runs through all integers starting with its lower limit m and
ending with its upper limit n.

A Iarge uppercase Greek letter sigma, X, |s used to denote summation.

n
ax; + b =a +b
E ( j y]) § E
J= ]1 ]1

EXAMPLE 8 Use summation notation to express the sum of the first 100 terms of the
sequence {a;}, wherea; = 1/jforj=1,2,3,.

J

Solution: The lower limit for the index of summation is 1, upper limit is 100. Z 1007 / 2

EXAMPLE 9 What is the value of 7 J=1J%?
Solution: ¥3-1j2=12+22+32+42452=1+4+9 + 16 + 25=55.
EXAMPLE 10 ¥y * X5, ij

Solution: first expand the inner summation and then continue by
computing the outer summation:

& https://www.youtube.com/@MonaIisaCy




4 Z?:l* Z,-3=1 iJ= Z;(i + 2i + 3i)

. 6i=6Y% i =6(1+2+3+4)=6*10=60
THEOREM 1 If aand r are real numbers and
r #= 0, then

arn+1 -

ari =) 72 ifr+1
(n+ 1Da ifr=1

EXAMPLE 11 What is the value of

256{0,2,4}8?

solution: Xgeeo 2,4y5=0+2+4=6

EXAMPLE 12 Find Y329 , k2

Solution: Y320 k2= Y199 k2 - Y52 k2
_100%x101x201 49x50%X99
6 6

=338350-40425=297925

a

n
j=0

hitps://monalisacs.co
T

TABLE 2 Some Useful Summation Formulae.

Sum Closed Form
n
+1

Zark(r;&ﬂ) arﬂi—a!r#l
E—0 r—1

n

Zk nn+1)
k=1 2

n

Z K2 nn+1)2n+1)
k=1 6

n

N nn + 1)2
k=1 4

o0

1

K x < 1
k=0 -

e 1

> kk T x < :
k=1 (1=x)

https://www.youtube.com/@Monalisacy
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2.5 Cardinality of Sets

DEFINITION 1 The sets A and B have the same cardinality if and only if there is a one-to-
one correspondence from A to B. When A and B have the same cardinality, we write |A| = |B|

DEFINITION 2 If there is a one-to-one function from A to B, the cardinality of A is less than
or the same as the cardinality of B and we write |A| < |B|. Moreover, when |A| < |B| and A and B
have different cardinality, we say that the cardinality af Asis less than the cardinality of B and
we write |A| < |B|.

Countable Sets

DEFINITION 3 A set that is either finite or has.the same cardinality as the set of positive
integers is called countable. A set that is net'countable is called uncountable.

EXAMPLE 1 Show that the set of odd.positive integers 1s a countable set.
Solution: Consider f (n) =2n— 1 from Z" to the set of odd positive integers.

FIGURE 1 A One-to-One Correspondence Between Z* and the Set of Odd Positive

Integers.
3 4 5 6 7 8 9 10 11 12 ...

LT

5 7 9 11 13 15 17 19 21 23 ... https://www.youtube.com/@MonalisaCy




4 EXAMPLES OF COUNTABLE AND UNCOUNTABLE SETS hipsimonalisacs.comn
Set of all integers is countable.

EXAMPLE 2 Show that the set of positive rational numbers is countable.

Solution: list the positive rational numbers as a sequence ry, ry, ..., I, .. ..

Every positive rational number is the quotient p/q of two positive integers.

Arrange the positive rational numbers by listing those with denominator g = 1 in the first row ,

q = 2 in the second row, and so on. ~ LN O
First list the positive rational numbers p/q with p ~3) "i,i.f' | % ,'3.}1,3' 3
+q = 2, followed by those with p + q =3, _wwnotcicled | ./  / _ / )
followed by those with p + q = 4, and so on. ¢ not listed ~(3) %'{ {i\\%}/ 3
Whenever we encounter a number p/q thatis,. .o\ 1 Y o/ o 4 s
already listed, we do not list it again. listed terms ':_@,' ’E@J Ve 3 3
For example,when we come to 2/2.= 1 we do not \ A~ 2 . s
list it because we have already listed 1/1=1. = 3 3 3 1
Because all positive rational numbers are listed j p / |

once, as the reader can verify, the set of positive '%' % % % 2

rational numbers is countable. ‘l_

& https://www.youtube.com/@l\/lonalisacy




/ An Uncountable Set https://monalisacs.con?\

EXAMPLE 3 Show that the set of real numbers 1s an uncountable set.

Solution: To show that the set of real numbers is uncountable, we suppose that the set of real
numbers 1s countable and arrive at a contradiction.

Then, the subset of all real numbers that fall between 0.and 1 would also be countable
(because any subset of a countable set 1s also countable).

The real numbers between 0 and 1 can be listed in some order, say, rl, r2, r3, . ... Let the
decimal representation of these real numbers be

rl =0.d11d12d13d14 . ..

r2 =0.d21d22d23d24 . ..

r3 =0.d31d32d33d34 ...

Example r1 =0.23794102...,r2 =0.44590138...,r3 =0.09118764 ..., and so on.

Therefore, all the real numbers between 0 and 1 cannot be listed, so the set of real numbers
between 0 and 1 is uncountable.

Any set with an uncountable subset 1s uncountable.

Hence, the set of real numbers 1s uncountable.
K https://www.youtube,com/@MonalisaCy




A THEOREM 1 If A and B are countable sets, then A U B is also countable hitps://monalisacs.cony

DEFINITION 4 We say that a function is computable if there is a computer program in some
programming language that finds the values of this function. If a function is not computable
we say it is uncomputable .

Every infinite set S contains a countable subset.
Every subset of countable set is countable.
Power set of countable set is uncountable.

Set of all integers is countable

Set of positive rational numbers is countable

The set R is uncountable.

The set Z2 is countable.

Q is countable.

The set of infinite sequences is uncountable.
The set of finite sequences is countable.

& https://www.youtube.com/@MonalisaCy




2.6 Relations and Their Properties hitps://monalisacs.conm
DEFINITION 1 Let A and B be sets. A binary relation from A to B is a subset of A x B
A binary relation from A to B is a set R of ordered pairs where the first element of each ordered pair
comes from A and the second element comes from B.

We use the notation a R b to denote that (a, b) € R and a not R b to denote that (a, b) €R.
a is said to be related to b by R.

EXAMPLE 1 Let A be the set of cities in the U.S.A., and let B be the set of the states in the U.S.A.
Define the relation R by specifying that (a, b) belongs.to-R if a city with name a is in the state b. For
instance, (Naperville, Illinois), (Dells,Wisconsin),(Chicago, lllinois), (Middletown, New Jersey),
areinR.

EXAMPLE 2LetA={0, 1, 2} and B ={a, b}. Then {(0, a), (0, b), (1, a), (2, b)} 1s a relation from A to
B. Relations can be represented graphically, using arrows to represent ordered pairs. Another way to

represent this relation is to use a table.
Oe

N

®q

e)h

/ https;//www,youtube.com/@M0na|isacy

e




/4 Functions as Relations The graph of f is the set of ordered pairs (a, b) such that"§<F (&)™
Because the graph of f is a subset of A x B, it is a relation from A to B.

ol

% | =

X X [
X |w
X

Relations on a Set e
DEFINITION 2 Arelation on a set A is a relation from A to A. 2_\
In other words, a relation on a set A is a subset of A x A.

EXAMPLE 3 Let A be the set {1, 2, 3, 4}. Which ordered pairs ** *
are in the relation R = {(a, b) | a divides b}? to—— as
Solution: R={(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2,4), (3, 3), (4, 4)}
EXAMPLE 4 How many relations are there on.aset with n elements?
Solution: A relation on a set A is a subset ofA'x'A. Because A x A has n? elements when A

has n elements, and a set with m elements has 2™ subsets, there are 2" subsets of A x A. Thus,
there are 2" relations on a set with n elements.

For example, there are 23% = 2° = 512 relations on the set {a, b, c}.

If |JA|=m and |B|=n then number of relations possible from A to B=2m™"

If |A|=n then number of relations possible A to A=2"

Inverse of relation Let R be a relation from Ato B .R~1 ={(b,a) , (a,b)e R}

is called inversal of R and R~1 is a relation from B to A.

¢ Complement of a Relation R=(4 x B)-R Complement of R

o2

N
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4 Diagonal Relation A relation R on a set A is called diagonal relation on A if R={(&@)[VAEAT
If A={1,2,3}, A,={(1,1),(2,2),(3,3)}

Properties of Relations

DEFINITION 3 Arelation R on a set A is called reflexive if (a,a) e R, Va €A

The diagonal relation on A is the smallest reflexive relation on A.

Any superset of diagonal relation is also reflexive .

Let A={a,b,c}

R,={(a,a),(b,b),(c,c)} smallest reflexive relation

R,={(a,a),(a,b),(b,b),(c.a),(c.c)}

R;=A XA Largest reflexive relation

Number of Reflexive Relations

Consider a set A with n elements , Say A={1, 2, ....... n—1, n }.JA XA|=n?

Out of n? elements n elements are:compulsory for relation to be reflexive.

e (1,1)(2,2)(3,3)....(n,n)

Remaining n?— n elements, we have choice of filling i.e either they are present or absent.
Hence, Total number of reflexive relation are 212 —n=2n("1),

Number of relations not reflexive = 2n2-2n2-n

& https://www.youtube.com/@l\/lonalisacy




4 EXAMPLE 5 Consider the following relations on {1, 2, 3, 4}: hps:/imonalisacs.comn

R;={(1,1),(1,2). (2, 1), (2,2), 3, 4), (4 1), (4 4)},

R,={(1. 1), (1, 2), (2 1},

R;={(1.1),(1,2),(1,4),(21)(22),33), 41,44}

R,={(2,1),(3,1).3,2),(4 1), (4 2),(43)}

Rs={(1,1), (1,2),(1,3), (1, 4), (2 2), (2, 3), (2,4),(3,3), (3, 4), (4 4)},

Re ={(3,4)}. Which of these relations are reflexive?

Solution: The relations R; and R are reflexive because they both contain all pairs of the form
(a, a), namely, (1, 1), (2, 2), (3, 3), and (4, 4).

R, R,, Ry, and Rg are not reflexive because (3, 3) is not in any of these relations.
EXAMPLE 6 Consider these relations on the set of integers:

R, ={(a, b)|a<b}, R,={(a, b) |a>Db},
R,={(a, b)|a=bora=-b}, R,={(a b)|a=h},
R.={(a b)|a=b+1}, Rg={(a b)|a+b<3!.

Which of these relations are reflexive?
Solution: Ry (because a < a for every integer a),R;, and R,

https://www.youtube,com/@MonalisaCy




4 DEFINITION 4 Arelation R on a set A is called symmetric if (b, a) € R whenevEF{A BFE R
for all a, b € A.Arelation R on a set A such that for all a, b € A, if (a, b) e Rand (b, a) € R,
then a = b is called antisymmetric.

The relation R on the set A is symmetric if vavb((a, b) € R — (b, a) € R). Similarly, the
relation R on the set A is antisymmetric if Yavb(((a, b) e R A (b, @) € R) — (a =D)).
EXAMPLE 7 if A={a,b,c} then

R,={ }smallest symmetric / antisymmetric relation on A

R,={(b,b)(c,c)} symmetric / antisymmetric relation

R,={(a,b),(b,a),(b,c)(c,b)} symmetric but not antisymmetric relation

R,=AXA largest symmetric relation on A.

A relation is symmetric if and only if a is related to b implies that b is related to a.

A relation is antisymmetric if and only if there are no pairs of distinct elements a and b with a
related to b and b related to a.

The terms symmetric and antisymmetric are not opposites,because a relation can have both of

these properties or may lack both of them .
n(n+1)
If A is a set with n elements then number of symmetric relations possible =2 2

Numbers of Symmetric relations possible with diagonal pair=2"
& https://www.youtube.com/@MonalisaCy




nn-1) https://monalisacs.con?\
Numbers of Symmetric relation possible with non diagonal pair= 2 2
n(n-1) 2n+n(n—-1) 2n+n’-n n*4+n
Total Symmetric relations possible =2"*2" 2 =2 2 =2 2 =2 2
EXAMPLE 8 Which of the relations from Example 5 are symmetric and which are

antisymmetric?

Solution: Ry ={(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1),.(4, 4)},

R, ={(1, 1), (1,2), 2, D},

Rs={(1,1),(1,2), (1, 4), (2 1), (2 2), 3, 3), (41),(4 4},

The relations R, and R, are symmetric, because i each case (b, a) belongs to the relation
whenever (a, b) does.

R,={(2,1),(3,1),(32),(41),(42), (43}

Rs={(1,1), (1,2),(1,3), (1,4),(2,2).(2,3), (2, 4), (3, 3), (3, 4), (4 4)},

R, ={(3, 4)}

R,, Rs, and R, are all antisymmetric. For each of these relations there is no pair of elements
a and b with a # b such that both (a, b) and (b, a) belong to the relation.

EXAMPLE 9 Which of the relations from Example 6 are symmetric and

which are antisymmetric?
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< R,={(a, b)|a<h}, R,={(a, b) | a> b}, R; = {(a, b) | a = b or a 2sfjgaiisacs.comny
R,={(a, b) |a=Db}, R. ={(a,b)|a=Db+1}, Re={(a,b) |a+b<3}.
Solution: The relations Rs, R,, and R, are symmetric.
R; is symmetric, for ifa=bora=-bthenb=aorb =-a.
R, Is symmetric because a = b implies that b = a.
R¢ Is symmetric because a + b < 3 implies that b + a'< 3.
The relations Ry, R,, R,, and R; are antisymmetric:
R, is antisymmetric because the inequalities.a.<trand b <a imply that a = b.
R, is antisymmetric because it is impossible thata > b and b > a.
R, is antisymmetric, because two elements are related if they are equal.
R: is antisymmetric because it is impossible thata=b+1andb=a + 1.

EXAMPLE 10 Is the “divides™ relation on the set of positive integers symmetric? Is it
antisymmetric?

Solution: Not symmetric because 1 devides 2, but 2 not devides 1.
Antisymmetric, if a and b are positive integers with alb and b|a, thena =b

& https://www.youtube,com/@MonalisaCy




4 DEFINITION 5 A relation R on a set A is called transitive if whenever (a, b) € FERITE<CIE
R, then (a,c) eR, foralla, b, c € A

vavbvc(((a, b) eRA(b,c) ER) — (a, c) €ER).

if A={a,b,c} then

R,={ }smallest transitive relation on A

R,={(a,a).(b,b).(c.C)}

R={(ab).(ac)}

R={(a,b),(b.c).(a,c)}

R;=AXA largest transitive relation on A.

<,= ,<,>=/,C are transitive.

EXAMPLE 11 Which of the relations in'Example 5 are transitive?
Solution: Ry ={(1, 1), (1, 2), (2, 1),(2. 2), (3, 4), (4, 1), (4, 4)},

R, is not transitive because (3, 4) and (4, 1) belong to R1, but (3, 1) does not.
RZ = {(1’ 1)’ (1’ 2)’ (2’ 1)},

R, is not transitive because (2, 1) and (1, 2) belong to R,, but (2, 2) does not.
R3 = {(1’ 1)’ (1’ 2)’ (l’ 4)’ (2’ 1)1 (21 2)1 (31 3)1 (41 1)1 (41 4)}1

R; is not transitive because (4, 1) and (1, 2) belong to R, but (4, 2) does not.
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FR={2.1).(31),(32,41) (42,43} T

R, IS transitive, because (3, 2) and (2, 1), (4, 2) and (2, 1), (4, 3) and (3, 1), and (4, 3) and (3,
2) are the only such sets of pairs, and (3, 1), (4, 1), and (4, 2) belong to R,.
Rs={(1,1), (1, 2),(1,3),(1,4),(22),(23),(24),(3,3), (3 4), 4 4},

Re =1{(3, 4)}.

R, Rs, and Rg are transitive.

EXAMPLE 12 Which of the relations are transitive?

R, ={(a, b) | a<b}, R, ={(a, b) | a> b}, R;={(a,b)|a=bora=-b},
R,={(a, b)|a=Db}, R. = {(a, b) |a="h+1}, Re={(a,b)|a+b<3}.
Solution: The relations Ry, R,, R5, and R, are transitive.

R, is transitive because a <b and b < c-imply that a <c.

R, is transitive because a > b and.b >.c-imply that a > c.

R, Is transitive because a = +b and b = +c imply that a = *c.

R, is clearly transitive , a=b and b=c imply that a=c.

R: is not transitive because (2, 1) and (1, 0) belong to R, but (2, 0) does not.

R¢ IS not transitive because (2, 1) and (1, 2) belong to R, but (2, 2) does not.
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£ EXAMPLE 13 Is the “divides” relation on the set of positive integers transitive?" ™=/ om

Solution: Suppose that a divides b and b divides c. Then there are positive integers k and |

such that b = ak and ¢ = bl. Hence, ¢ = a(kl), so a divides c.

It follows that this relation is transitive.

Combining Relations

Because relations from A to B are subsets of A x B, two relations from A to B can be combined

in any way two sets can be combined.

EXAMPLE 14 LetA={1, 2,3} and B ={1, 2, 3;4}. The relations R, = {(1, 1), (2, 2), (3, 3)}

and R, = {(1, 1), (1, 2), (1, 3), (1, 4)} can be combined to obtain

Ry UR,={(1,1), (1,2), (1, 3), (L 4), (2. 2):(3,3)},

RN R ={(1, 1)},

R, -R,={(2, 2), (3,3},

R,-R;={(1,2),(1,3), (1, 4)}.

DEFINITION 6 Let R be a relation from a set Ato a set B and S a relation from B to a set C.

The composite of R and S is the relation consisting of ordered pairs (a, c), where

a € A, c € C, and for which there exists an element b € B such that (a, b) € R

and (b, c) € S. We denote the composite of R and S by S °R.

K https://www.youtube.com/@Monalisacy




£ Computing the composite of two relations requires that we find elements that are"{Fé"setsHE™
element of ordered pairs in the first relation and the first element of ordered pairs in the second
relation.

EXAMPLE 15 What is the composite of the relations R and S, where R is the relation from{1,
2,3Mo{1, 2, 3,4} withR ={(1, 1), (1, 4), (2, 3), (3, 1), (3, 4)} and S is the relation from {1, 2,
3,4} t0 {0, 1, 2} with S ={(1, 0), (2, 0), (3, 1), (3, 2), (4,1)}?

Solution : S° R ={(1, 0), (1, 1), (2, 1), (2, 2), (3, 0); (3,1)}.

DEFINITION 7 Let R be a relation on the set A..ThepowersR", n=1, 2, 3, ..., are defined
recursively by Rt =R and R»'=Rre R.

The definition shows that R2=R° R, R3 = R>2 R= (R ° R)° R, and so on

EXAMPLE 16 Let R={(1, 1), (2, 1), (3, 2),.(4, 3)}. Find the powers R", n=2,3,4,....
Solution: Because R? = R °R, we find that R ={(1, 1), (2, 1), (3, 1), (4, 2)}.

RY=R%>°R, R*={(1, 1), (2, 1), (3, 1);-(4,"1)}.

R*is the same as R3, so R*={(1, 1), (2, 1), (3, 1), (4, 1)}.

It also follows that R"=R3forn=5,6,7,....

THEOREM 1 The relation R on a set A is transitive if and only if R" € R

forn=1,23,....
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2.7 n-ary Relations and Their Applications

DEFINITION 1 Let As, A2, ..., Anbe sets. An n-ary relation on these sets is a subset of Ai x
Axx - - - x AnThe sets A, Az, . . ., Anare called the domains of the relation, and n is called its
degree.

EXAMPLE 1 Let R be the relation on N x N x N consisting of triples (a, b, c), where a, b,
and c are integers with a < b < c. Then(l, 2, 3) € R, but(2, 4, 3) € R. The degree of this
relation is 3. Its domains are all equal to the set of natural numbers.

Databases and Relations

We can represent databases in relational data model, based on the concept of a relation.
A database consists of records, which are n-tuples, made up of fields.

The fields are the entries of the n-tuples.

For instance, a database of student records may be made up of fields containing the name,
student number, major, and grade point-average of the student.

TABLE 1 Students.

Student_name ID_number Major GPA

Ackermann 231455 Computer Science 3.88

Adams 888323 Physics 3.45

Chou 102147 Computer Science 3.49

Goodfriend 453876 Mathematics 3.45

Rao 678543 Mathematics 3.90

Stevens 786576 Psychology 299 https://www.youtube.com/@Monalisacy
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2.8 Representing Relations
Representing Relations Using Matrices
A relation between finite sets can be represented using a zero—one matrix.

m;=1if (a;b;) € R, 0 if (a;,b;) not € R
The zero—one matrix representing R has a 1 as its (i, j) entry when g; is related to b;, and a 0 in
this position if g, is not related to b

EXAMPLE 1 Suppose that A ={1, 2, 3} and B = {1, 2}. Let R be the relation from A to B
containing (a, b)ifa € A, b € B, and a > b. 0 0

Solution: Because R={(2, 1), (3, 1), (3, 2)}, the.matrix for R is M = } ?

The matrix of a relation on a set, which is a square matrix, can be used to determine whether
the relation has certain properties.

Arelation R on A is reflexive if (a, a) € R whenever a € A. R is reflexive if all the elements on
the main diagonal of My, are equal to 1.

The relation R is symmetric if (a, b) € R implies that (b, a) € R.

R is symmetric if and only if my = my;, for all pairs of integers i and j.

R is symmetric if and only if Mg = (Mg)!

The relation R is antisymmetric if and only if (a, b) € Rand (b, a) ER

& 1mp1y that a = b https://www.youtube.com/@MonaIisaCy




The matrix of an antisymmetric relation has the property that if m;= 1 with i # j, et 0
Or, in other words, either m; = 0 or m; = 0 when i # j.

The Zero—One Matrices for Reflexive Svymmetric Antisvmmetric
1 1

|
/0
. SR o 1 1 0

I /

_ | 1
1 1 . 0/1 0 1 1

EXAMPLE 2 Suppose that the relation R on a set isrepresented by the matrix
Is R reflexive, symmetric, and/or antisymmetric?
Solution: Because all the diagonal elements of this matrix are equal to 1, R is reflexive.
Because Mris symmetric, it follows that R is.symmetric. R is not antisymmetric.
The Boolean operations join and meet can be,used to find the matrices representing the union
and the intersection of two relations. Mg, g, = Mg, vV Mg, and Mg,nr, = Mg, A Mg,.
EXAMPLE 3 Suppose that the relations 'Riand Rz on a set A are represented by the matrices
What are the matrices representing R+U R2and Ri N R2?

10 1 10 1 101
Mg, =|1 0 0 and Mg, = [0 1 1| Mrur, =Mpg, VMg, =1 11
01 0 1 0 0 I 10
1 0 1
NIleR2 = MR1 VAN MR2 = [0 0 0]
K 0 0 0 https://www.youtube,com/@Monalisacy




Representing Relations USing Digraphs https://monalisacs.corm\

DEFINITION 1 A directed graph, or digraph, consists of a set V of vertices (or nodes)
together with a set E of ordered pairs of elements of V called edges (or arcs). The vertex a is
called the initial vertex of the edge (a, b), and the vertex b is called the terminal vertex of this
edge. a b
An edge of the form (a, a) is represented using an arc from the vertex a back to

itself. Such an edge is called a loop.

EXAMPLE 4 The directed graph with vertices a, b, ¢, and d, and edges (a, b),
(a,d), (b, b), (b, d),(c a),(c b),and (d, b) | 2
EXAMPLE 5 The directed graph of the relation R = {(1, 1), (1,
3),(2,1),(2,3),(2,4),(3,1),(3,2), (4, ¥ontheset {1, 2, 3,4}
EXAMPLE 6 What are the ordered pairs in the relation R

represented by the directed graph shown'in Figure 4 3
Solution: The ordered pairs (x, y) in the relation are R ={(1, 3), (1, 4), (2, 1), (2,
2),(2,3),(3,1),(3,3), (4 1), (4 3)}

The directed graph representing a relation can be used to determine whether the
relation has various properties.

A relation is reflexive if and only if there 1s a loop at every vertex of the directed
N graph, so that every ordered pair of the form (x, x) occurs in the relation,
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4 Arelation is symmetric if and only if for every edge between distinct vertices in t§°digraphe
there is an edge in the opposite direction, so that (y, x) is in the relation whenever (X, y) is

in the relation.

Similarly, a relation is antisymmetric if and only if there are never two edges in opposite
directions between distinct vertices.

Finally, a relation is transitive if and only if whenever there is an edge from a vertex x to a
vertex y and an edge from a vertex y to a vertex z, there is an edge from xto z .

EXAMPLE 10 Determine whether the relations for the directed graphs shown in Figure are
reflexive, symmetric, antisymmetric, and/or.transitive. .

Solution: Because there are loops at every wvertex of the directed \
graph of R, it is reflexive.
R is neither symmetric nor antisymmetric because there is an edge )
from a to b but not one from b to a. (@) Directed graph of R (b) Directed graph
Finally, R is not transitive because there is an edge from a to b and
an edge from b to ¢, but no edge from a to c.
Because loops are not present at all the vertices of the directed

N graph of S, this relation is not reflexive.

n?\

b,

f S

https://www.youtube.com/@MonalisaCy




A It is symmetric and not antisymmetric, because every edge between distinct verti¢8s/jg"=m\
accompanied by an edge in the opposite direction.
It is also not hard to see from the directed graph that S is not transitive, because (c, a) and (a,
b) belong to S, but (c, b) does not belong to S.

2.9 Closures of Relations

Introduction : let R be a relation on a set A. R may or/may not have some property P, such as
reflexivity, symmetry, or transitivity. If there is a relation’S with property P containing R such
that S is a subset of every relation with property P containing R, then S is called the closure of
R with respect to P.
Closures : The relation R = {(1,1),(1,2),(2,1),(3,2)} on the set A = {1, 2, 3} is not reflexive.
How can we produce a reflexive relation containing R that is as small as possible? This can be
done by adding (2, 2) and (3, 3) to R, because these are the only pairs of the form (a, a) that
are not in R.
Because this relation contains R, is reflexive, and is contained within every reflexive relation
that contains R, it is called the reflexive closure of R.
The reflexive closure of R can be formed by adding to R all pairs of the form
(a, a) with a € A, not already in R. The reflexive closure of R =RUA, where

\_ A={(a,a)lacA} is the diagonal relation on A. ntps:hvns youtube com/@MonalsaCS




4 EXAMPLE 1 What is the reflexive closure of the relation R = {(a,b)| a<b} on the"§&{TE s>
integers?
Solution: The reflexive closure of R is RUA={(a, b)|a <b} U {(a, a)|la € Z}={(a, b) | a < b}.
The relation {(1, 1), (1, 2), (2, 2), (2, 3), (3, 1), (3, 2)} on {1, 2, 3} is not symmetric.
How can we produce a symmetric relation that is as small as possible and contains R?
To do this,we need only add (2, 1) and (1, 3), because these are the only pairs of the form (b, a)
with (a, b) € R that are not in R.
This new relation is symmetric and contains R.
This new relation is called the symmetric closure of R.
The symmetric closure of a relation can be constructed by taking the union of a relation with
its inverse that is, R U R'! is the symmetric closure of R, where R'! ={(b, a) | (a, b) € R}.
EXAMPLE 2 What is the symmetric closure of the relation R = {(a, b) | a > b} on the set of
positive integers?
Solution: The symmetric closure of R is the relation RUR! ={(a, b)|a >b}U {(b, a) | a > b} =
{(a, b) | a # b}.

Suppose that a relation R is not transitive. How can we produce a transitive
relation that contains R such that this new relation is contained within any
K transitive relation. https://www.youtube,com/@MonalisaCy




4 Consider the relation R = {(1, 3), (1, 4), (2, 1), (3, 2)} on the set {1, 2, 3, 4}. This'FelatigHiE™
not transitive because it does not contain all pairs of the form (a, c) where (a, b) and (b, c) are
inR.

The pairs of this form not in R are (1, 2), (2, 3), (2, 4), and (3, 1). Adding these pairs does not
produce a transitive relation, because the resulting relation contains (3, 1) and (1, 4) but does
not contain (3, 4).

This shows that constructing the transitive closure of a relation is more complicated than
constructing either the reflexive or symmetric closure.

The transitive closure of a relation can be found-by adding new ordered pairs that must be

present and then repeating this process until-no new ordered pairs are needed.

Paths in Directed Graphs
DEFINITION 1 A path from a te.b'in the directed graph G is a sequence of edges (X,, X;), (X;,

X,), (X5, X3), - - ., (X1, X,) IN G, where n is a nonnegative integer, and X, = a and x,, = b,that is, a
sequence of edges where the terminal vertex of an edge is the same as the initial vertex in the
next edge in the path. This path is denoted by x,, X;, X,, . . ., X1, X, and has length n. We view

the empty set of edges as a path of length zero from a to a. A path of length n > 1 that begins

\_ and ends at the same vertex is called a circuit or cycle. hitps:/fuww youtube.com/@MonalisaCS




£ EXAMPLE 3 Which of the following are paths in the directed graph
shown in Figure : a, b, e, d; a, e, c,d, b;b,a,c,b,a, a,b;dc;c,Db,a;
e, b, a,b,a, b, e?What are the lengths of those that are paths?

Which of the paths in this list are circuits?

Solution: Because each of (a, b), (b, e), and (e, d) is an edge, a, b, e, d
Is a path of length three.

Because (c, d) is not an edge, a, €, ¢, d, b is not a path.

Also, b, a, ¢, b, a, a, b is a path of length six because (b, a), (a, ¢), (c, b), (b, a), (a, a), and (a,
b) are all edges.

We see that d, c is a path of length one, because (d, c) is an edge.
Also ¢, b, a is a path of length two, because (c, b) and (b, a) are edges.

All of (e, b), (b, @), (a, b), (b, @), (a,b), and (b, e) are edges, so e, b, a, b, a, b, e is a path of
length six.

The two paths b, a, ¢, b, a,a, bande, b, a, b, a, b, e are circuits because
they begin and end at the same vertex.

\«_The paths a, b, e, d; ¢, b, a; and d, ¢ are not circuits. hitps:/fwww.youtube. com/@MonalisaCS /




4" There is a path from a to b in R if there is a sequence of elements a, X;, X,, . . . , X2 BWith (&)
X;) ER, (X, X)) €ER, ..., and (X, b) ER.

Transitive Closures

DEFINITION 2 Let R be a relation on a set A. The connectivity relation R* consists of the
pairs (a, b) such that there is a path of length at least one from ato b in R.

THEOREM 2 The transitive closure of a relation R equals the connectivity relation R*

THEOREM 3 Let Mg, be the zero—one matrix ofithe relation R on a set with n elements. Then
the zero—one matrix of the transitive closure R*isMgx = My Vv M2l v MBIy -+ - v Ml

Warshall’s algorithm can be used for finding transitive Closures.
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2.10 Equivalence Relations hitps/imonalisacs.com
DEFINITION 1 Arelation on a set A is called an equivalence relation if it is reflexive,
symmetric, and transitive.
DEFINITION 2 Two elements a and b that are related by an equivalence relation are called
equivalent. The notation a ~ b is often used to denote that a and b are equivalent elements
with respect to a particular equivalence relation.
EXAMPLE 1 A={a,b,c}
R,={(a,a)(b,b)(c,c)} smallest equivalence relation on A.
R,={(a,a)(b,b)(c,c)(a,b)(b.a)}
R,=A XA largest equivalence relation on A.

EXAMPLE 2 Let R be the relation on the set-of integers such that aRb if and only ifa=Db or
a = -b. we showed that R is reflexive, symmetric, and transitive.It follows that R is an
equivalence relation.

EXAMPLE 3 Let R be the relation-on the set of real numbers such that aRb if and only if

a - b is an integer.Is R an equivalence relation?

Solution: Because a - a = 0 is an integer for all real numbers a, aRa for all real numbers a.
Hence, R is reflexive.

Now suppose that aRb. Then a - b is an integer, so b - a is also an integer.

Hence, bRa. It follows that R is symmetric.
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4 If aRb and bRc, then a - b and b — c are integers. Therefore, a - ¢ = (a - b) + (b - ¢) 1§58 4™
integer. Hence, aRc. Thus, R is transitive.
Consequently, R 1s an equivalence relation.
Equivalence Classes
DEFINITION 3 Let R be an equivalence relation on a set A. The set of all elements that are
related to an element a of A 1s called the equivalence class, of a. The equivalence class of a
with respect to R is denoted by [a],. When only onerelation is under consideration, we can
delete the subscript R and write [a] for this equivalence class.
If R 1s an equivalence relation on a set A, the equivalence class of the element a is [al, = {s | (q,
s) € R}.
If b € [a]g, then b 1s called a representative of this equivalence class.
EXAMPLE 4 What is the equivalence class of an integer for the equivalence relation of
Example 27
Solution: Because an integer 1s equivalent to itself and its negative in this equivalence relation,
it follows that [a] = {-a, a}.
This set contains two distinct integers unless a = 0.
For instance,[7] = {-7, 7}, [-5] = {-5, 5}, and [0] = {0}.
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A EXAMPLE 5 What are the equivalence classes of 0 and 1 for congruence modu]grg7menasacscomn
Solution: The equivalence class of 0 contains all integers a such that a = 0 (mod 4).
The integers in this class are those divisible by 4.
Hence, the equivalence class of O for this relationis [0] ={...,-8,-4,0,4,8, ...}
The equivalence class of 1 contains all the integers a such that a = 1 (mod 4).
The integers 1n this class are those that have a remainder-of 1 when divided by 4.
Hence, the equivalence class of 1 for this relationis [1]=71...,-7,-3,1,5,9,...}
The equivalence classes of the relation congruence modulo m are called the congruence
classes modulo m.
The congruence class of an integer a module mis denoted by [a],,,
sofa]l,={..,a-2m,a-m,a,a+m,a+2m,...}.
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4 2.11 Partial Orderings PHpsimonalisacs.comh
DEFINITION 1 Arelation R on a set S is called a partial ordering or partial order if it is
reflexive, antisymmetric, and transitive. A set S together with a partial ordering R is called a
partially ordered set, or poset, and is denoted by (S, R). Members of S are called elements of
the poset.
EXAMPLE 1 if A={a,b,c}
R,={(a,a)(b,b)(c,c)} smallest poset and only relation which is both equivalence and poset.
R,={(a,a)(b,b)(c.c)(a,b)(a,c)}
EXAMPLE 2 Show that the “greater than or equal” relation (>) is a partial ordering on the set
of integers.
Solution: Because a > a for every integer a, > is reflexive. [fa>band b > a, thena =b.
Hence, > is antisymmetric. Finally, > is transitive because a > b and b > ¢ imply that a > c.
It follows that > is a partial ordering.on the set of integers and (Z, >) is a poset.
EXAMPLE 3 The divisibility relation | is a partial ordering on the set of positive integers,
because it is reflexive, antisymmetric, and transitive.
EXAMPLE 4 Show that the relation C is a partial ordering on the power set of a set S.
Solution: Because A € A whenever A is a subset of S, C is reflexive.

¢ It is antisymmetric because A € B and B € A imply that A = B. s youtube com/@VonalisaCs
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A" Finally, C is transitive, because A € B and B < C imply that A € C.
Hence, C is a partial ordering on P (S), and (P (S), ©) is a poset.
EXAMPLE 5 Let R be the relation on the set of people such that xR y if x and y are people
and x is older than y. Show that R is not a partial ordering.

Solution: Note that R is antisymmetric because if a person x is older than a persony, theny
Is not older than x. That is, if xR y, then y not R x.
The relation R is transitive because if person x is older than person y and y is older than person
z, then x is older than z. That is, if xR y and yRz, then xR z.
However, R is not reflexive, because no personis,older than himself or herself.
That is, x not R x for all people x. It follows-that R is not a partial ordering.
DEFINITION 2 The elements a and b of'a'poset (S,< ) are called comparable if eithera < b
or b < a.When a and b are elements.of S)such that neither a < b nor b < a, aand b are called
incomparable.
EXAMPLE 6 In the poset (Z+, |), are the integers 3 and 9 comparable?
Are 5 and 7 comparable?
Solution: The integers 3 and 9 are comparable, because 3 | 9. The integers
5 and 7 are incomparable, because 5 not| 7 and 7 not | 5.
e When every two elements in the set are comparable, the relation is caIIegpg,,mQLtgggg,@mgﬁsaCy




4 DEFINITION 3 If (S, <) is a poset and every two elements of S are comparablé™3"[¥"eatieda)
totally ordered or linearly ordered set, and is called a total order or a linear order. A totally
ordered set is also called a chain.
EXAMPLE 7 The poset (Z, <) is totally ordered, because a < b or b <a whenever a and b are
integers.
EXAMPLE 8 The poset (Z+, |) is not totally orderedbecause it contains elements that are
incomparable, such as 5 and 7.
DEFINITION 4 (S, <) is a well-ordered set if itsis,aposet such that is a total ordering and
every nonempty subset of S has a least element:
Lexicographic Order
The lexicographic ordering <on A, x A; is defined by specifying that one pair is less than a
second pair 1if the first entry of the first pair 1s less than (in A,) the first entry of the second
pair, or if the first entries are equal, but the second entry of this pair is less than (in A,) the
second entry of the second pair. In other words, (a,, a,) is less than (b,, b,), that s,
(a,, a,) < (b, b,),
either if a, <, b, or if both a, = b, and a, <, b,.
EXAMPLE 9 Determine whether (3, 5) < (4, 8), whether (3, 8) < (4, 5),

\_ and whether (4, 9) < (4, 11) in the poset (Z x Z,< ), hitps:/www.youtube.com/@MonalisaCs




4 Solution: Because 3 < 4, it follows that (3, 5) < (4, 8) and that (3, 8) < (4, 5). htips/imonalisacs.comm
We have (4, 9) < (4, 11), because the first entries of (4, 9) and (4, 11) are the same but 9 < 11.

Hasse Diagrams y

Consider the directed graph for the partial ordering {(a, b) |

a < b} on the set {1, 2, 3, 4}, shown in Figure (a).

Because this relation is a partial ordering, it is reflexive;

and its directed graph has loops at all vertices.

Consequently, we do not have to show these loops because

they must be present;

In Figure (b) loops are not shown. Because'a partial ordering | ) lm

is transitive, we do not have to show those edges that must be present because of transitivity.

In Figure (c) the edges (1, 3), (1, 4),7and (2, 4) are not shown because they must be present.

If we assume that all edges are pointed “upward”, we do not have to show the directions of the

edges; Figure (c) does not show directions

The resulting diagram is called the Hasse diagram of (S,< ), named after

the twentieth-century German mathematician Helmut Hasse.

Let (S, <) be a poset. We say that an element y € S covers an element
\_XESifx<yandthereisnoelementz € Ssuchthatx <z <y. https://www.youtube.com/@MonalisaCS /




/4 The set of pairs (x, y) such that y covers x is called the covering relation of (S, <J>/m/s <™
EXAMPLE 10 Draw the Hasse diagram representing the partial ordering {(a, b)|a divides b}

on{l, 2,3,4,6,8, 12}.

The resulting Hasse diagram 1s shown in Figure (C):

Solution: Remove all loops, as shown in Figure (b). Then delete all the edges implied by the
transitive property.These are (1, 4), (1, 6), (1, 8), (1, 12).+(2, 8), (2, 12), and (3, 12).

Arrange all edges to point upward, and delete all arrows-to obtain the Hasse diagram.

8/12
4 6

© https://www.youtube,com/@Monalisacy




EXAMPLE 11 Draw the Hasse diagram for the partial ordering {(A, B) opsy pnatisacs.com/
| A € B} on the power set P (S) where S = {a, b, c}.
Maximal and Minimal Elements

An element of a poset is called maximal if it is not less than any {a,c} (b, )
element of the poset. ’ ‘
That is, a is maximal in the poset (S,<) if there is no b-€ S such that {a)

a<nbh.

Similarly, an element of a poset is called minimal if it is not greater
than any element of the poset. w
That is, a is minimal if there is no element b'e€ S such that b < a. 2¢ 20
Maximal and minimal elements are easy to-spot using a Hasse

diagram.

They are the “top” and “bottom” elements in the diagram. 4
EXAMPLE 12 Which elements of the poset ({2, 4, 5, 10, 12, 20, 25},
| ) are maximal, and which are minimal?

Solution: The Hasse diagram in Figure for this poset shows that the 24 7
maximal elements are 12, 20, and 25, and the minimal elements are 2

and 5.

a poset can have more than one maximal element and more than one
& minimal element. https://www.youtube.com/@MonalisaCy
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A Sometimes there is an element in a poset that is greater than every other element,"ts#/monalisacs.com™
Such an element is called the greatest element.

That is, a is the greatest element of the poset (5,<)ifb <aforallb eS.

The greatest element is unique when it exists .

An element is called the least element if it is less than all the other elements in the poset.

That is, a is the least element of (S, <)ifa<Dbforallb €S.

The least element is unique when it exists.

EXAMPLE 13 Determine whether the posets represented by each of the Hasse diagrams in
Figure have a greatest element and a least element.

b c d d e d d
Y X /K b 0 C
a a b a b a

(a) (b) (c) (d)

Solution: (a)The least element of the poset is a no greatest element.
(b) The poset has neither a least nor a greatest element.
(c) The poset has no least element greatest element is d.

‘¢_ (d) The poset has least element a and greatest element d. hitps://www.youtube.com/@MonalisaCs /




http //monallsacs com

© EXAMPLE 14 Let S be a set. Determine whether there is a greatest element and a least
element in the poset (P (S), <).
Solution: The least element is the empty set, because @ < T for any subset T of S.
The set S is the greatest element in this poset, because T < S whenever T is a subset of S.
Sometimes it is possible to find an element that is greater than or equal to all the elements in a
subset A of a poset (5,<).
If u is an element of S such that a < u ,va € Ajthen'u is called an upper bound of A.
Likewise, there may be an element less than or equal to all the elements in A.
If | is an element of S such that | < a ,va € A,.then | is called a lower bound of A,
EXAMPLE 15 Find the lower and upper bounds of the subsets {a, b, c} {j,h},and {a, c,d,f
} in the poset with the Hasse diagram shown in Figure. j

Solution: The upper bounds of {a, b, c}aree, f,j,and h,and . f
its only lower bound is a.

There are no upper bounds of {j, h}, and its lower bounds are
a,b,cdeandf.

The upper bounds of {a, c, d, f } are f, h, and j, and its lower

bound is a. “
& https://www.youtube,com/@MonalisaCy
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4 The element x is called the least upper bound of the subset A if x is an upper boUfit/ tHaE™™"
Is less than every other upper bound of A.
That is, x is the least upper bound of A if a< x whenever a € A, and x < z whenever z is an
upper bound of A.
Similarly, the element y is called the greatest lower bound of A if y is a lower bound of
A and z < y whenever z is a lower bound of A. A
The greatest lower bound and least upper bound of A is unique if it exists.

g9 f
The greatest lower bound and least upper bound of a subset A are denoted by
glb(A) and lub(A), respectively. d ;
EXAMPLE 16 Find the greatest lower bound-and the least upper bound of
{b, d, g}, if they exist, in the poset shown in-Figure. b :

Solution: The upper bounds of {b, d, g} are g and h. Because g < h, g is
the least upper bound.

The lower bounds of {b, d, g} are a and b. Because a < b, b is the greatest
lower bound.

EXAMPLE 17 Find the greatest lower bound and the least upper bound of
the sets {3, 9, 12} and {1, 2, 4, 5, 10}, if they exist, in the poset (Z+, |).

& https://www.youtube,com/@MonalisaCy




£ Solution: An integer is a lower bound of {3, 9, 12}if 3, 9, and 12 are divisible by TRI&THIESEE™
The only such integers are 1 and 3.

Because 1 | 3, 3 1s the greatest lower bound of {3, 9, 12}.

The only lower bound for the set {1, 2, 4, 5, 10} with respect to | is the element 1.

Hence, 1 1s the greatest lower bound for {1, 2, 4, 5, 10}.

An integer is an upper bound for {3, 9, 12} if and only if it 1s divisible by 3, 9, and 12.

Which is 36. Hence, 36 1s the least upper boundof {3, 9, 12}.

A positive integer 1s an upper bound for the-set {1, 2, 4, 5, 10} if and only if it is divisible by 1,
2,4,5,and 10.

Which is 20. Hence, 20 1s the least upper bound of {1, 2, 4, 5, 10}.

K https://www.youtube,com/@Monalisacy
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4 Lattices
A partially ordered set in which every pair of elements has
both a least upper bound and a greatest lower bound is
called a lattice
EXAMPLE 18 Determine whether the posets represented
by each of the Hasse diagrams in Figure are lattices.
Solution: The posets represented by the Hasse diagrams'in (a) and (c) are both lattices because
in each poset every pair of elements has both a least upper bound and a greatest lower bound.
The poset with the Hasse diagram shown in (b) is'not a lattice, because the elements b and ¢
have no least upper bound.
Each of the elements d, e, and f is an upper-bound, but none of these three are lub.
EXAMPLE 19 Is the poset (Z*, |) a lattice?
Solution: Let a and b be two positive integers. The least upper bound and greatest lower bound
of these two integers are the least.common multiple and the greatest common divisor of these
integers, respectively. It follows that this poset is a lattice.
EXAMPLE 20 Determine whether the posets ({1,2,3,4,5},|) and ({1,2,4,8,16}, | ) are lattices.
Solution: Because 2 and 3 have no upper bounds in ({1, 2, 3, 4, 5}, |), they
certainly do not have a least upper bound. Hence, the first poset is not a lattice.
Every two elements of the second poset have both a least upper bound and

\_ @ greatest lower bound. Hence, this second poset is a lattice. ntps: i youtube.com/@MonalisaCS
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£ EXAMPLE 21 Determine whether (P (S), €) is a lattice where S is a set. hipsimonalisacs.comn
Solution: Let A and B be two subsets of S. The least upper bound and the greatest lower bound
of Aand B are AU B and A N B, respectively. Hence, (P (S), ) is a lattice.
A lattice can be described using two binary operations : join and meet.
The join, or sum, is the least upper bound (LUB), sometimes called the supremum or Sup.
And the meet, or product, of two elements, is the greatest lower bound (GLB), sometimes
called the infimum or Inf. Join (or sum):  “ajoin b” LUB(ca,b)z avb

EXAMPLE 22 let’s determine if the following
posets are lattice using a Hasse diagram.

Meet (or product): “a meet b” GLB(a. b)=anb

Solution: The left figure is a lattice because each
pair of elements has both a lub(join) and glb(meet).
However, the right figure is not a lattice because e f e f
each pair of elements are incomparable.
The upper bound for b and c is {d,e,f,g}, we can’t b c b c
identify which one of these vertices is the
join(LUB) — therefore, this poset is not a lattice. a a

K Lattice https://wW%ﬁfﬁJbe.com/@l\/lonalisacy
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https://monalisacg.con?\
First 7 Hesse diagram are lattice while last 3 are not lattice.

f\\f | +
Several types of lattices :

Complete Lattice — all subsets of a poset have a join and meet, such as the divisibility relation
for the natural numbers or the power set with the-subset relation.

Bounded Lattice — if the lattice has a least and greatest element, denoted 0 and 1 respectively.

Complemented Lattice — a bounded lattice in which every element is complemented. Namely,
the complement of 1 is 0, and the complement of O is 1.

Distributive Lattice — if for all elements in the poset the distributive property holds.

Boolean Lattice — a complemented distributive lattice, such as the power set with the subset
relation.

The total order set is always Distributive Lattice .
A lattice L said to be a distributive lattice if every element in L has “atmost one complement™

https://www.youtube.c MonalisaCS




£ EXAMPLE 23 Which of the following is/are distributive lattice ? y "ips Imenagacs.comn
Liav(bAc)=(avb)Aa(avc)=aVXx=yAy . c b c
a # y not a distributive lattice

Lav(bAc)=(avb)a(avc)=aVvx=bAy x Ly x L2

a # b not a distributive lattice

EXAMPLE 24 Which of the following is not a distributive lattice
A. (p(A); €) where A={a,b,c,d}

Distributive law hold for any 3 subset hence its-distributive.
B. (Dg,/) Dy, = {1,2,4,8,16,32,64}

It’s a total order set hence distributive lattice:

EXAMPLE 25 In the lattice (D,g;/). which of the following is true

The complement of 1 is 18. true

The complement of 2 is 9. true

The complement of 3 is 6. false

The complement of 6 doesn’t exist. true

It is a distributive lattice but not complemented lattice.

& https://www.youtube.com/@l\/lonalisacy




A EXAMPLE 26 For the lattice shown below how many complement ‘e’ had ? "™ <™

Al B2 C.3 D.4 € f
It’s a complementary lattice but not a distributive lattice b c
Complement of d=b,e,c,f Complement of b=d,c,f 1
Complement of c=d,b,e  Complement of e=d,c,f

Ans: 3

EXAMPLE 27 For the lattice shown check distributive and complemented property.

The lattice is neither distributive nor complemented. € f
Complement of a=g b c
Complement of b=f 5

Complement of c=e
Complement of d=does not exist
Complement of e=f,c

Its not complemented ,also not distributive as for e we have 2 complement .
& https://www.youtube.com/@l\/lonalisacy
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2.12 Groups Theory

Algebraic Structure (S,*): Anonempty set S is called a algebraic structure with respect to
binary operation ‘*’.

If (a*b) € S, Va,b € S then * is a closer operation on S.
N={1,2,3,.....c0}

Z={Set of all integer }

Q={Set of all rational numbers}

R={Set of all real numbers}

C={Set of all complex numbers}

EXAMPLE 1

(N ,+, X) is an algebraic structure-w.r.t “+, X’.
(N, —) is not an algebraic structure w.r.t © —’.
(N ,/) is not an algebraic structure w.r.t */°.

(Z ,+,%,-) is an algebraic structure w.r.t “+,X,-".

(Z ,/) 1s not an algebraic structure w.r.t /’.
https://www.youtube.com/@MonaIisaCy




A Semigroup: An algebraic structure (S,*) is a semigroup if ((a*b)*c)=(a*(b*c)) , V& e EI™
I.e * is associative on S.

EXAMPLE 2

(N ,+) is a semigroup as ‘+’ is associative .

(N, X) is a semigroup as ‘X’ is associative .

(N, —) is not a semigroup as ‘—’ is neither associative nor a closer operation.
(N, /) is not a semigroup as ‘/’ is neither associative nor a closer operation.
Monoid: A semigroup is called a monoid if-identity element exist.

Let e € Ss.t. (a*e)=a for Va € S then e is identity element w.r.t *.
EXAMPLE 3

(N, %) Is a monoid as a x 1=a for va € N.

(N,+) is not a monoid as a+0=a and 0 ¢ N.

(Z,+) isamonoid as 0 € Z.

(Z,-) is not a monoid as ‘-’ is not associative ,hence not semigroup not a monoid.
https://www.youtube.com/@l\/lonalisacy




A Group: Amonoid (S,*) is called a group if for each a € S there exist an element B*&"§gites com™
(a*b)=(b*a)=e. b= inverse of a=a! .

EXAMPLE 4 (Z ,+) is agroup a+(-a)=0

(N, X) is not a group ax %:1 % &N

Abelian group: A group (G,*) is said to be abelian if (a*b)=(b*a) , va,b € S.
A group with commutative property.

EXAMPLE 5 (Z ,+) is an abelian group

Closer =Algebraic structure
Closer , Associative =Semigroup

Closer , Associative , =

Closer , Associative , ,Inverse =Group

Closer , Associative , ,JInverse, Commutative  =Abelian group

EXAMPLE 6 Set of all non singular matrices of order (2x2) is a group w.r.t
matrix multiplication but not an abelian group because matrix multiplication
IS not commutative .

& https://www.youtube.com/@MonalisaCy




£ EXAMPLE 7 Which of the following is not a semigroup ? hipsimonalisacs.comn
A) {1,3,5,...... oo} w.r.t ‘X’ .It’s closer and associative hence semigroup .

B) {2,4,6,8.... 00} w.r.t ‘+’.semigroup

C) {1,3,5,7,....00} w.r.t ‘+’. It’s not closer as odd +odd =even hence not semigroup.
D) {2,4,6,8....00} w.r.t °X’. semigroup .

EXAMPLE 8 The set A={0<x <1 and x is a real number}w.r.t ‘X’ is
A)A Semigroup but not a Monoid  B)A Monoid but not a Group
C)A group D) Not.a Semigroup

Multiplication is closer ,Associative ,have identity 1 w.r.t ‘X’ .

But no inverse as > x > =1, > >1
3 2 2
Hence a Monoid but not a Group
EXAMPLE 9 Let Z=Set of all int ,(a*b)=Min of {a,b}.Then (Z,*) is
It is closer ,Associative but no identity .Min(a,e)=a ,e>a but e is not unique.

\ Hence lt’S d SemlgI'Ollp . https://www.youtube.com/@Monalisacy




A Finite groups: If number of elements in a group is finite then it is called as finite"§roup"=<"\
Order of finite group =number of elements in the group .
If a group has only one element then that element is identity elementof group. 1w w?

S={0} is a group w.r.t ‘+’ 1 11 w w?
S={1} is a group w.r.t X’ w lw w? 1
S={1,-1} is a group w.r.t ‘X’ w2 w? 1 w
EXAMPLE 10 The cube roots of unity {1,w,w?} is a group w.r.t. <x’ 1 -1 i -
Inverse of 1=1,w= w? w?=w 1 11 -1 i -
EXAMPLE 11 The forth roots of unity {1,-1,i,-i} is a group w.r.t. “x’ 111 1 5
i=-1 ,Inverse of 1=1,-1=-1,-i=i,i=-i

Addition module @, ,Multiplication module ® N
Where m is a positive int ,If a,b are any two positive integers U oL B
ap,, b =at+b if a+tb <m, =reminder %b if atb>m

a®,, b=axb if axb<m, =reminder &° if atb>m

& m https://www.youtube.com/@l\/lonalisacy




A EXAMPLE 12 S={2,4,6,8} isa group & ., Q  Migp/imongisacs.qgm
Closer , Associative , identity ,Inverse hence it’s a group 214 8 2 6
Identity element =6 4 |18 6 4 2
Inverse of 2=8, 4=4,6=6,8=2 6 |2 4 6 8
EXAMPLE 13 Which of the following is a group s lg 2 8 4

A){1,2345}wrt@d, B){1,2,3,45}wrt®,
C) {0,1,2,3,45} w.rt®, D){1,2,3,4,5,6} w.rt®-
A,B are not closer hence not group.C have no.inverse hence not group .D is a group

Order of an element O(a) Let (G,*) be.a group with identity element e ,for any element aeG
order of a O(a)=n ,where n is the smallest +ve integer s.t. a"=e.

EXAMPLE 14 G={1,-1} is a group-w.r.t multiplication O(1)=1,0(-1)=2
EXAMPLE 15 G={1,w,w?} is a group w.r.t multiplication
0O(1)=1,0(w)=3, O(w?)=3

EXAMPLE 16 G={1,-1,i,-i} is a group w.r.t multiplication
0(1)21,0(-1):2, O(i):4, O(_i):4 https://www.youtube.com/@MonaIisacy




A Subgroup: Let (G,*) be a group. A subset H ,HSG is called a subgroup of G if H'is"8°G5tip ™
W.r.t. *.

Let (G,*) be a group with identity element e ,G & {e} are called trivial subgroup of G.
Proper Subgroup: Any other subgroup of G which is not a trivial called proper subgroup .
If G is Abelian, then a subgroup of G should be abelian,

EXAMPLE 17 G={1,-1,i,-i} is a group w.r.t multiplication ,H={1,-1} is a proper subgroup
LLagrange theorem For any finite group say G, the order of subgroup H of group G divides
the order of G. The order of the group represents the number of elements.

This theorem was given by Joseph-Louis Lagrange.

EXAMPLE 18 G={0,1,2,3,4,5} is a groupw.r.t @, .Which of the fallowing subset of G are
subgroup of G.

A)H,={0,3} B) H,={0,5} C) H;={0,2,4} D) H,={0,2,3,4}

A) Subgroup B) notcloser hence not subgroup

C) Subgroup D) 4 is not divisible by 6. Hence not subgroup.

EXAMPLE 19 G={1,2,3,4,5,6} is a group w.r.t ®- Which of the fallowing are subgroup of G.
A) H={1,3} B) H,={1,6} C) H;={1,2,4} D) H,={1,3,5}

A) Not closer hence not subgroup  B) Subgroup
e C) Subgroup D) Not closer hence not subgroup ntps:hvns youtube com/@MonalsaCS




A EXAMPLE 20 G={1,3,5,7} is a group W.r.t ®4 Which of the fallowing are subgr&tpy6F ;=™
A) H={1,3} B) H,={1,5} C) Hy={1,7} D) H,={1,3,5}
A,B,C are subgroup while D is not a subgroup as 3 is not divisible by 4.
Intersection of any two subgroup of a group is also a subgroup .
Union of two subgroup H; & H, of a group G is also a subgroup of G iff H,cH, or H,cH,.
EXAMPLE 21 Let (G,*) be a group of order p where p-is a prime number ,now many proper
subgroup are possible for G ? A)0 B)2 Cp-2 D)p
Order(G)=p,Order(H)=1 or p
H={e} or{G}
Hence G has no proper subgroup . Ans (A)0
Cyclic Group A group (G,*) is said to be cyclic if there exist an element aeG s.t. every
element of G can be written as a" for some integer n.
The element a is called generating.element or generator .
Most of finite group are cyclic group .
EXAMPLE 22 The set {1,-1} is a cyclic group w.r.t multiplication.
Generator =-1,(-1)>=1
EXAMPLE 23 The set {1,w,w?} is a cyclic group w.r.t multiplication.
e Generator =w,w?,(w)3=1, (w?)?=w, (w?)3=1

https://www.youtube.com/@ Monalisacy




https://monalisacs.con?\

A If (G,*) is a cyclic group with generator ‘a’ then

(1) at is also a generator of G

(2) O(a)=0(G)

EXAMPLE 24 G={0,1,2,3} is a cyclic group w.r.t @,
1°=16¢,1=2,13=16,16,1=3, 1= 16,16,16,1=0
3¥=36¢,3=2,33=36,36p,3=1, 3*=3 §,39,34,3=0
Generator=1,3

EXAMPLE 25 G={1,2,3,4} is a cyclic group w.r.t ®.:.Generator=2,3
EXAMPLE 26 G={1,3,5,7} is the only group w.r.t @gnot a cyclic group so we can’t find
generator

Theorem — If a Group order is prime number,.then it is cyclic group and every Cyclic group is
abelian group.

Number of generator in G=@(n) [Euler function of n]

Counts the number of positive integers less than n that are coprime to n.

If the prime factorization of n is given by n =p&*...*p%n,

Then ¢(n) =n *(1 - 1/p)* ... (1 - 1/p,).

EXAMPLE 27 (G ,*) is a cyclic group of O(8) ,Number of generator in G=4

8=23, ¢(8)=8*(1-1/2)=4

Coprime to 8={1,3,5,7}

\ https://www.youtube.com/@ Monalisacy




£ EXAMPLE 28 if (G,*) is a cyclic group of order 100 then number of generator OFG="$TL00)

100=22*52 , ((100)=100*(1-1/2)(1-1/5)=100*(1/2)*(4/5)=40 * a b c d
EXAMPLE 29 (G,*) is given below a |b d a c
The generators are (a)a&b  (b)a&c (c)a&d  (d)b&d b (d ¢ b a
Identity element=c ,so ¢ can’t be generator c |la b ¢ d
a’=b, a®=d, a*=c, a is a generator . d lc a d b

b2=c, b3=b, b is not a generator .

d?=b, d3=a, d*=c, d is a generator

Ans:ad

EXAMPLE 30 The incompleticomposition table of finite group is given below.

The last row of the table is av b c d
(@)abcd a |[b d a c
(b)cadb b |d ¢ b a
(c)abdc cla b ¢ d
K (d)c abd d httpSZ//WWW.youtube.com/@MonaIisa(Zy




/4 For cyclic group fallowing statements are true hips imenalisacs.comm
Every cyclic group is abelian
Every group of prime order is cyclic & abelian
Every subgroup of cyclic is cyclic but generator of subgroup may not be same as cyclic group.
For group fallowing statements are true
In a group (G,*) with identity element e if a*a=a then a=e
a*a=a*e —a=e
In a group(G,*) with identity element e if a'=a; va €G ,then G is abelian group.
In a group (G,*) if (a*b)?=a?*b? , Va,b €G then G is a abelian group

& https://www.youtube.com/@ Monalisacy
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