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 Section1: Engineering Mathematics

 Discrete Mathematics: Propositional and first order logic. Sets, relations, functions, partial 

orders and lattices. Monoids, Groups. Graphs: connectivity, matching, coloring. 

Combinatorics: counting, recurrence relations , generating functions.

 Linear Algebra: Matrices, determinants, system of linear equations, eigenvalues and 

eigenvectors, LU decomposition.

 Calculus: Limits, continuity and differentiability. Maxima and minima. Mean value theorem. 

Integration.

 Probability and Statistics: Random variables. Uniform, normal, exponential, poisson and 

binomial distributions. Mean, median, mode and standard deviation. Conditional probability 

and Bayes theorem. 
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 Discrete Mathematics: Propositional and first order logic. Sets, relations, functions, partial 

orders and lattices.Monoids, Groups.Graphs: connectivity, matching, coloring.Combinatorics : 

counting, recurrence relations , generating functions.

 Chapter 1: Logic

 Propositional Logic, Propositional Equivalences , Predicates and Quantifiers , Nested 

Quantifiers , Rules of Inference , Introduction to Proofs.

 Chapter 2 : Set Theory

 Sets, relations, functions, partial orders and lattices.Monoids, Groups.

 Chapter 3 : Graph Theory

 Chapter 4 : Combinatorics M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS



 Chapter 2 : Set Theory

 2.1 Sets 

 2.2 Set Operations

 2.3 Functions

 2.4 Sequences and Summations

 2.5 Cardinality of Sets

 2.6 Relations and Their Properties

 2.7 n-ary Relations and Their Applications

 2.8 Representing Relations

 2.9 Closures of Relations

 2.10 Equivalence Relations

 2.11 Partial Orderings

 2.12 Groups
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2.1 Sets
 DEFINITION 1 A set is an unordered collection of objects, called elements or members of 

the set. A set is said to contain its elements. We write a ∈ A to denote that a is an element of 

the set A. The notation a ∉ A denotes that a is not an element of the set A. 

 It is common for sets to be denoted using uppercase letters. Lowercase letters are usually

used to denote elements of sets.

 There are several ways to describe a set. One way is to list all the members of a set, For

example, the notation {a, b, c, d} represents the set with the four elements a, b, c, and d. This

way of describing a set is known as the roster method.

 EXAMPLE 1 The set V of all vowels in the English alphabet can be written as V ={a,e,i,o,u}.

 EXAMPLE 2 The set O of odd positive integers less than 10 can be expressed by O 

={1,3,5,7,9}.

 EXAMPLE 3 The set of positive integers less than 100 can be denoted by {1, 2, 3, . . . , 99}.

 Another way to describe a set is to use set builder notation. 

 We characterize all those elements in the set by stating the property or properties. 

 For instance, the set O of all odd positive integers less than 10 can be written as

 O = {x | x is an odd positive integer less than 10}, or, specifying the universe                            

as the set of positive integers, as O = {x ∈ Z+ | x is odd and x < 10}.
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 We often use this type of notation to describe sets when it is impossible to list all the elements

of the set. 

 N = {0, 1, 2, 3, . . .}, the set of natural numbers

 Z = {. . . , -2, -1, 0, 1, 2, . . .}, the set of integers

 Z+ = {1, 2, 3, . . .}, the set of positive integers

 Q = {p/q | p ∈ Z, q ∈ Z, and q ≠ 0}, the set of rational numbers

 R, the set of real numbers

 R+, the set of positive real numbers

 C, the set of complex numbers. 

 Intervals:When a and b are real numbers with a < b, we write [a, b] = {x | a ≤ x ≤ b} 

 [a, b) = {x | a ≤ x < b} (a, b] = {x | a < x ≤ b}    (a, b) = {x | a < x < b}

 [a, b] is called the closed interval from a to b & (a, b) is called the open interval from a to b. 

 Sets can have other sets as members.

 EXAMPLE 4 The set {N, Z, Q, R} is a set containing four elements, each of which is a set. 

 DEFINITION 2 Two sets are equal if and only if they have the same                                 

elements . Therefore, if A and B are sets,then A and B are equal if and                                     

only if ∀x(x ∈ A  x ∈ B). We write A = B if A and B are equal sets.
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 EXAMPLE 5 The sets {1, 3, 5} and {3, 5, 1} are equal, because they have the same elements. 

Note that the order in which the elements of a set are listed does not matter. Note also that it 

does not matter if an element of a set is listed more than once, so {1, 3, 3, 3, 5, 5, 5, 5} is the 

same as the set {1, 3, 5} because they have the same elements. 

❑ THE EMPTY SET There is a special set that has no elements. This set is called the empty 

set,or null set, and is denoted by ∅. The empty set can also be denoted by { }.

 A set with one element is called a singleton set. 

 A common error is to confuse the empty set ∅ with the set {∅}, which is a singleton set. 

❑ Venn Diagrams

 Sets can be represented graphically using Venn diagrams, named after the English 

mathematician John Venn, who introduced their use in 1881. 

 In Venn diagrams the universal set U, which contains all the objects under consideration, is 

represented by a rectangle. 

 Inside this rectangle, circles or other geometrical figures are used to represent sets. 

 Sometimes points are used to represent the particular elements of the set.

 Venn diagrams are often used to indicate the relationships between sets. 

 EXAMPLE 6 Draw a Venn diagram that represents V, the set of vowels                                         

in the English alphabet.
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❑ Subsets 
 DEFINITION 3 The set A is a subset of B if and only if 

every element of A is also an element of B. We use the 
notation A ⊆ B to indicate that A is a subset of the set B.

 Showing that A is a Subset of B To show that A ⊆ B, show 
that if x ∈ A then x ∈ B.

 Showing that A is Not a Subset of B To show that A ⊈ B, 
find a single x ∈ A such that x ∉ B. 

 EXAMPLE 7 The set of all odd positive integers less than 
10 is a subset of the set of all positive integers less than 10, 
the set of rational numbers is a subset of the set of real 
numbers.

 Venn Diagram Showing that A Is a Subset of B 

 THEOREM 1 For every set S, (i ) ∅ ⊆ S and (ii ) S ⊆ S. 
 Proof: To show that ∅ ⊆ S, we must show that                                 

∀x(x ∈ ∅ → x ∈ S) is true. 
 Because the empty set contains no elements, it follows that x ∈ ∅ is 

always false. 
 x ∈ ∅ → x ∈ S is always true, because its hypothesis is always false 

and a conditional statement with a false hypothesis is true.
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 Therefore, ∀x(x ∈ ∅ → x ∈ S) is true.

 Note that this is an example of a vacuous proof. 

 When we wish to emphasize that a set A is a subset of a set B but that A ≠ B, we write

A ⊂ B and say that A is a proper subset of B. 

 A is a proper subset of B if and only if ∀x(x ∈ A → x ∈ B) ∧ ∃x(x ∈ B ∧ x ∉ A) 

 Showing Two Sets are Equal To show that two sets A and B are equal, show that A ⊆ B

and B ⊆ A.

 Sets may have other sets as members. For instance, we have the sets

 A = {∅, {a}, {b}, {a, b}} and B = {x | x is a subset of the set {a, b}}.

 These two sets are equal, that is, A = B. Also note that {a} ∈ A, but a ∉ A. 

❑ The Size of a Set

 DEFINITION 4 Let S be a set. If there are exactly n distinct elements in S,we say that S is a 

finite set and that n is the cardinality of S. The cardinality of S is denoted by |S|.

 Remark: The term cardinality comes from the common usage of the term                                 

cardinal number as the size of a finite set.

 EXAMPLE 8 Let A be the set of odd positive integers < 10. Then |A| = 5. 

 EXAMPLE 9 Let S be the set of letters in the English alphabet. |S| = 26.

 EXAMPLE 10 Because the null set has no elements, it follows that |∅| = 0.



M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS



 DEFINITION 5 A set is said to be infinite if it is not finite.

 EXAMPLE 11 The set of positive integers is infinite. 
❑ Power Sets 
 DEFINITION 6 Given a set S, the power set of S is the set of all subsets of the set S. The     

     power set of S is denoted by P(S)
 EXAMPLE 12 What is the power set of the set {0, 1, 2}?
 Solution: P({0, 1, 2}) = {∅, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}.
 EXAMPLE 13 What is the power set of the empty set? What is the power set of the set {∅}?
 Solution: The empty set has exactly one subset, namely, itself. 
 Consequently , P(∅) = {∅}.
 The set {∅} has exactly two subsets, namely, ∅ and the set {∅} itself. P({∅}) = {∅, {∅}}. 
 If a set has n elements, then its power set has 2n elements. 

❑ Cartesian Products  
 DEFINITION 7  The ordered n-tuple (a1, a2, . . . , an) is the ordered collection   

     that has a1 as its first element, a2 as its second element, . . . , and an as its nth       

     element
 Two ordered n-tuples are equal if and only if each corresponding pair of their   

     elements is equal.
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 In other words, (a1, a2, . . . , an) = (b1, b2, . . . , bn) if and only if ai = bi,for i = 1, 2, . . . , n. 
 In particular, ordered 2-tuples are called ordered pairs. 
 The ordered pairs (a, b) and (c, d) are equal if and only if a = c and b = d. 
 Note that (a, b) and (b, a) are not equal unless a = b 
 DEFINITION 8 Let A and B be sets.The Cartesian product of A and B, denoted by A × B, is the set 

of all ordered pairs (a, b), where a ∈ A and b ∈ B. Hence, A×B ={(a, b)|a∈A ∧ b ∈ B}.
 EXAMPLE 14 What is the Cartesian product of A = {1, 2} and B = {a, b, c}?
 Solution: A × B = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)}. 
 A × B and B × A are not equal, unless A = ∅ or B = ∅ (so that A × B = ∅) or A = B .

 DEFINITION 9 The Cartesian product of the sets A1, A2, . . . , An, denoted by A1 × A2 × · · · × An, 
is the set of ordered n-tuples (a1, a2, . . . , an), where ai belongs to Ai for i = 1, 2, . . . , n. In other 
words , A1 × A2 × · · · × An = {(a1, a2, . . . , an) | ai ∈ Ai for i = 1, 2, . . . , n}. 

 EXAMPLE 15 What is the Cartesian product A×B×C,where A={0,1},B={1,2},and C={0,1,2}?
 Solution: A × B × C consists of all ordered triples (a, b, c), where a ∈ A,b ∈ B,                                   

and c ∈ C. Hence,A × B × C = {(0, 1, 0), (0, 1, 1), (0, 1, 2),(0, 2, 0), (0, 2, 1),                                         
(0, 2, 2),(1, 1, 0), (1, 1, 1), (1, 1, 2), (1, 2, 0), (1, 2, 1), (1, 2, 2)}. 

 We use the notation A2 to denote A × A, the Cartesian product of the set A with itself.
Similarly, A3 = A × A × A, A4 = A × A × A × A, and so on.

 EXAMPLE 16 Suppose that A = {1, 2}. A2 = {(1, 1), (1, 2), (2, 1), (2, 2)} and                                
A3 ={(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)}. 
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2.2 Set Operations 
 DEFINITION 1 Let A and B be sets. The union of the sets A and B, denoted by A ∪ B, is the 

set that contains those elements that are either in A or in B, or in both.

 A ∪ B = {x | x ∈ A ∨ x ∈ B}.

 EXAMPLE 1 {1, 3, 5} ∪ {1, 2, 3} = {1, 2, 3, 5}. 

 DEFINITION 2 Let A and B be sets. The intersection of the sets A and B, denoted by A ∩ B, 

is the set containing those elements in both A and B.

 A ∩ B = {x | x ∈ A ∧ x ∈ B}.

 EXAMPLE 2 {1, 3, 5} ∩ {1, 2, 3} = {1, 3}.

 DEFINITION 3 Two sets are called disjoint if their intersection is the empty set.

 EXAMPLE 3 Let A={1,3,5,7,9} and B={2,4,6,8,10}.Because A ∩ B=∅, A and B are disjoint.
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 Principle of inclusion–exclusion.
 |A| + |B| counts each element that is in A but not in B or in B but not in A exactly once,

and each element that is in both A and B exactly twice. 
 Thus, if the number of elements that are in both A and B is subtracted from |A| + |B|, 

elements in A ∩ B will be counted only once.Hence,
 |A ∪ B| = |A| + |B| - |A ∩ B|.
 DEFINITION 4 Let A and B be sets. The difference of A and B, denoted by A - B, is the set 

containing those elements that are in A but not in B. The difference of A and B is also called the 
complement of B with respect to A.

 The difference of sets A and B is sometimes denoted by A\B. A - B = {x | x ∈ A ∧ x ∉ B}.
 EXAMPLE 4 The difference of {1,3,5} and  {1,2,3} is the set {5}; that is, {1,3,5} - {1,2,3}= {5}. 

 DEFINITION 5 Let U be the universal set. The 

complement of the set A, denoted by ҧ𝐴, is the 

complement of A with respect to U. Therefore, the 

complement of the set A is U - A.

 ഥA = {x | x ∈ U | x ∉A} 

 A - B = A ∩ ത𝐵 

 EXAMPLE 5 Let A = {a, e, i, o, u} ,U=All Alphabet 

 ഥA = {b, c, d, f, g, h, j, k, l, m, n, p, q, r, s, t, v, w, x, y, z}. 
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Table 1 : Set Identities 

Identity Name

A ∩ U = A  , A ∪ ∅ = A Identity laws

A ∪ U = U  , A ∩ ∅ = ∅   Domination laws

A ∪ A = A  , A ∩ A = A  Idempotent laws

ҧ𝐴 = A Complementation law

A ∪ B = B ∪ A   , A ∩ B = B ∩ A Commutative laws

A ∪ (B ∪ C) = (A ∪ B) ∪ C  , A ∩ (B ∩ C) = (A ∩ B) ∩ C Associative laws

A ∪(B∩C) = (A ∪ B)∩(A ∪ C) , A ∩(B ∪ C) = (A ∩ B)∪(A ∩ C) Distributive laws

𝐴 ∩ 𝐵= ҧ𝐴 ∪ ത𝐵 , 𝐴 ∪ 𝐵= ҧ𝐴 ∩ ത𝐵 De Morgan’s laws

A ∪ (A ∩ B) = A ,A ∩ (A ∪ B) = A Absorption laws

A ∪ ҧ𝐴 = U ,A ∩ ҧ𝐴 = ∅ Complement laws
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 EXAMPLE 6 Use set builder notation and logical equivalences to establish the first De 

Morgan law 𝐴 ∩ 𝐵= ҧ𝐴 ∪ ത𝐵.

 Solution: We can prove this identity with the following steps.

 𝐴 ∩ 𝐵 = {x | x ∉A ∩ B}  by definition of complement

  = {x | ¬(x ∈ (A ∩ B))} by definition of does not belong symbol

  = {x | ¬(x ∈ A ∧ x ∈ B)} by definition of intersection

  = {x | ¬(x ∈ A) ∨ ¬(x ∈ B)} by the first De Morgan law for logical equivalences

  = {x | x ∉ A ∨ x ∉ B} by definition of does not belong symbol

  = {x | x ∈ ҧ𝐴 ∨ x ∈ ത𝐵} by definition of complement

  = {x | x ∈ ҧ𝐴 ∪ ത𝐵}  by definition of union

  = ҧ𝐴 ∪ ത𝐵   by meaning of set builder notation

 EXAMPLE 7 

 Let A, B, and C be sets. Show that 𝐴 ∪ 𝐵 ∩ 𝐶 = ҧ𝐶 ∪ ത𝐵 ∩ ҧ𝐴.

 Solution: 𝐴 ∪ 𝐵 ∩ 𝐶  = ҧ𝐴 ∩ 𝐵 ∩ 𝐶  by the first De Morgan law

  = ҧ𝐴 ∩ ( ത𝐵 ∪ ҧ𝐶)   by the second De Morgan law

  = ( ത𝐵 ∪ ҧ𝐶) ∩ ҧ𝐴 = ( ҧ𝐶∪ ത𝐵 ) ∩ ҧ𝐴 by the commutative law. 

 Set identities can also be proved using membership tables. 
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 EXAMPLE 8 Use a membership table to show that A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).
 Solution: Because the columns for A ∩ (B ∪ C) and (A ∩ B) ∪ (A ∩ C) are the same, the

identity is valid. 

 Generalized Unions and Intersections 
 EXAMPLE 9 Let A = {0,2,4,6,8}, B = {0,1,2,3,4}, and C = {0,3,6,9}. 

What are A ∪ B ∪ C and A ∩ B ∩ C?

 Solution: A ∪ B ∪ C = {0, 1, 2, 3, 4, 6, 8, 9}.

 A ∩ B ∩ C = {0}.  
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 DEFINITION 6 The union of a collection of sets is the set that contains those elements that 

are members of at least one set in the collection.

 We use the notation A1 ∪ A2 ∪ · · · ∪ An =ሪ
𝑖=1

𝑛
𝐴𝑖 to denote the union of the sets A1, A2,…., An.

 DEFINITION 7 The intersection of a collection of sets is the set that contains those elements 

that are members of all the sets in the collection.

 We use the notation A1 ∩ A2 ∩ · · · ∩ An =ረ
𝑖=1

𝑛
𝐴𝑖 to denote the intersection of the sets A1, 

A2,….,An.
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2.3 Functions
 DEFINITION 1 Let A and B be nonempty sets. A function f from A to B is an assignment of 

exactly one element of B to each element of A.We write f (a) = b if b is the unique element of 
B assigned by the function f to the element a of A.If f is a function from A to B, we write              
f :A → B.  

 Functions are sometimes also called mappings or                                                          
transformations.

 The Function f Maps A to B. 

 DEFINITION 2 If f is a function from A to B, we say                                                                          

that A is the domain of f and B is the codomain of f.                                                                             
If f (a) = b, we say that b is the image of a and a is a preimage of b. The range, or image, of f 
is the set of all images of elements of A.If f is a function from A to B, we say that f maps A to B. 

 Two functions are equal when they have the same domain, have the same codomain, and map 

each element of their common domain to the same element in their common codomain .

 Number of Function possible from A to B= |B||A|

 EXAMPLE 1 Let f : Z → Z assign the square of an integer to this integer.                                  

Then, f (x) = x2, where the domain of f is the set of all integers, the codomain                                   

of f is the set of all integers that are perfect squares, namely, {0, 1, 4, 9, . . . }.
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 DEFINITION 3 Let f1 and f2 be functions from A to R. Then f1 + f2 and f1f2 are also functions 
from A to R defined for all x ∈ A by 

  (f1 + f2)(x) = f1(x) + f2(x),

  (f1f2)(x) = f1(x)f2(x). 

 EXAMPLE 2 Let f1 and f2 be functions from R to R such that f1(x) = x2 and f2(x) = x - x2. What 
are the functions f1 + f2 and f1f2?

 Solution: From the definition of the sum and product of functions, it follows that

 (f1 + f2)(x) = f1(x) + f2(x) = x2 + (x - x2) = x

 (f1f2)(x) = x2(x - x2) = x3 - x4. 

 DEFINITION 4 Let f be a function from A to B and let S be a subset of A. The image of S 
under the function f is the subset of B that consists of the images of the elements of S. We 
denote the image of S by f (S), so  f (S) = {t | ∃s ∈S (t = f (s))}.

 We also use the shorthand {f (s) | s ∈ S} to denote this set. 

 EXAMPLE 3 Let A = {a, b, c, d, e} and B = {1, 2, 3, 4} with                                                                  
f (a) = 2, f (b) = 1, f (c) = 4, f (d) = 1, and f (e) = 1. 

 The image of the subset S = {b, c, d} is the set f (S) = {1, 4}. 
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 One-to-One and Onto Functions 

 Some functions never assign the same value to two different domain elements. These 

functions are said to be one-to-one. 

 DEFINITION 5 A function f is said to be one-to-one, or an injunction, if and only if                 

f (a) = f (b) implies that a = b for all a and b in the domain of f. A function is said to be 

injective if it is one-to-one

 One to one function A→B possible if |A|≤ |B| 

 Number of one to one functions possible A→B =|B|P|A|

 If |A|=|B|=n then number of one to one functions possible n!

 EXAMPLE 4 Determine whether the function f from {a, b, c, d}                                                

to {1, 2, 3, 4, 5} with f (a) = 4, f (b) = 5,f (c) = 1, and f (d) = 3 is 

     one-to-one.

 Solution: The function f is one-to-one because f takes on different values at domain. 

 EXAMPLE 5 Determine whether the function f (x) = x2 from the set of                             

integers to the set of integers is one-to-one.

 Solution: The function f (x) = x2 is not one-to-one because, for instance,                                          

f (1) = f (-1) = 1,but 1 ≠-1.

 The function f (x) = x2 with its domain restricted to Z+ is one-to-one. 
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 EXAMPLE 6 Determine whether the function f (x) = x + 1 from the set of real numbers to 
itself is one-to one.

 Solution: The function f (x) = x + 1 is a one-to-one function. x + 1 ≠ y + 1 when x ≠ y. 
 EXAMPLE 7 If there are exactly 120 one to one functions possible from A to B then Which 

of the following is not true .(I)|A|=5,|B|=5  (II) |A|=4,|B|=5 
 (III)|A|=3,|B|=6   (IV)|A|=5,|B|=4 (V)|A|=3,|B|=10

 Solution: (I) 5P5=
5!

5−5 !
=120 True (II) 5P4=120 True (III) 6P3=120 

 (IV) |A|>|B| not one to one  (V) 10P3=720 not true
 DEFINITION 6 A function f from A to B is called onto, or a surjection, if and only if for 

every element b ∈ B there is an element a ∈ A with f (a) = b. A function f is called surjective if 
it is onto.

 Onto functions A→B possible if |B|≤ |A| 
 If |A|=|B| then every one to one function from A →B is also onto and vice versa.
 If |A|=|B|=n then number of onto functions from A→B is n!.
 If |A|=m and |B|=n (m>n) then numbers of onto functions possible from A →B is 
 𝑛𝑚-𝑛𝑐1(n-1)m+ 𝑛𝑐2(n-2)m - 𝑛𝑐3(n-3)m +…..(-1)n 𝑛𝑐n−1(1)m

 EXAMPLE 8 |A|= 6,|B|=3 then how many onto functions are possible A →B 
 Solution: m=6 n=3 ,Numbers of onto functions possible 
 36- 3𝑐1(3-1)6 + 3𝑐2(3-2)6 =729-3*64+3=732-192=540
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 EXAMPLE 9 |A|=n and B=2 (n≥2) then number of onto functions possible from A →B is __ .

 Solution: 2n- 2𝑐1(2-1)n = 2n- 2𝑐1(2-1)n = 2n- 2

 EXAMPLE 10 How many ways we can assign 5 employes to 4 projects so that every employ 

is assigned to only one project and every project is assigned by at least one employe.

 Solution: Number of ways possible 45- 4𝑐1(4-1)5 + 4𝑐2(4-2)5 - 4𝑐3(4-3)5

 =1024-4*243+6*32-4

 =1024-972+192-4=1216-976=240

 EXAMPLE 11 Let f be the function from {a, b, c, d} to {1, 2, 3} defined                               

by f (a) = 3, f (b) = 2, f (c) = 1, and f (d) = 3. Is f an onto function?

 Solution: Because all three elements of the codomain are images of elements in the domain, 

we see that f is onto. 

 EXAMPLE 12 Is the function f (x) = x2 from the set of integers to the set of integers onto?

 Solution: The function f is not onto because there is no integer x with x2 = -1, for instance. 

 EXAMPLE 13 Is the function f (x) = x + 1 from the set of integers to the                                     

set of integers onto? 

 Solution: This function is onto , because for every integer y there is an                                  

integer x such that f (x) = y if x + 1 = y.
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 DEFINITION 7 The function f is a one-to-one correspondence, or a bijection, if it is both 

one-to-one and onto. We also say that such a function is bijective.

 Bijection functions A→B possible if |A|= |B| 

 If |A|=|B|=n then number of Bijection possible =n!

 EXAMPLE 14 Let f be the function from {a, b, c, d} to {1, 2, 3, 4} with f (a) = 4, f (b) = 2, f (c) 
= 1, and f (d) = 3. Is f a bijection?

 Solution: The function f is one-to-one and onto. Hence, f is a bijection. 

 Suppose that f is a function from a set A to itself. If A is finite, then f is                                            

one-to-one if and only if it is onto. 

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS



 Let A be a set. The identity function on A is the function ιA : A →A, where ιA(x) = x for all x∈A.

 The identity function ιA is the function that assigns each element to itself. 

 The function ιA is one-to-one and onto, so it is a bijection. 

 Inverse Functions and Compositions of Functions 

 DEFINITION 8 Let f be a one-to-one correspondence from the set A to the set B. The inverse 

function of f is the function that assigns to an element b belonging to B the unique element a in 

A such that f (a) = b. The inverse function of f is denoted by f -1. Hence, f -1(b) = a when

f (a) = b. 

 Be sure not to confuse the function f -1 with the function 1/f .

 If a function f is not a one-to-one correspondence, we cannot define an inverse function of f . 

 If f is not one-to-one, some element b in the codomain is the image of more than one element 

in the domain. 

 If f is not onto, for some element b in the codomain, no element a in the domain exists for 

which f (a) = b. 

 A one-to-one correspondence is called invertible because we can define                                   

an inverse of this function. 

 A function is not invertible if it is not a one-to-one correspondence,                                            

because the inverse of such a function does not exist.
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 The Function f -1 Is the Inverse of Function f .

 EXAMPLE 15 Let f be the function from {a, b, c} to                                                                       

{1, 2, 3} such that f (a) = 2, f (b) = 3, and f (c) = 1.

Is f invertible, and if it is, what is its inverse?

 Solution: The function f is invertible because it is a                                                                      

one-to-one correspondence. 

 The inverse function f -1 ,  f -1(1) = c, f -1(2) = a, and f -1(3) = b.

 EXAMPLE 16 Let f : Z → Z be such that f (x) = x + 1. Is f invertible, and if it is, what is its 

inverse?

 Solution: The function f has an inverse because it is a one-to-one correspondence, 

 So that y = x + 1. Then x = y - 1. This means that y - 1 is the unique element of Z that is sent to 

y by f . Consequently, f -1(y) = y - 1.

 EXAMPLE 17 Let f be the function from R to R with f (x) = x2. Is f invertible?

 Solution: Because f (-2) = f (2) = 4, f is not one-to-one. If an inverse                                         

function were defined , it would have to assign two elements to 4.                                        

Hence, f is not invertible. 
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 DEFINITION 9 Let g be a function from the set A to the set B and let f be a function from 

     the set B to the set C. The composition of the functions f and g, denoted for all a ∈ A by f ◦ g,

     is defined by (f ◦ g)(a) = f (g(a)). 

 To find (f ◦ g)(a) we first apply the function g to a to obtain g(a) and then we apply the 

function f to the result g(a) to obtain (f ◦ g)(a) = f (g(a)). 

 The composition f ◦ g cannot be defined unless the range of g is a subset of the domain of f .

 The commutative law does not hold for the composition of functions, (f ◦ g) ≠(g ◦ f ) 

  The Composition of the Functions f and g. 
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 EXAMPLE 18 Let g be the function from the set {a, b, c} to itself such that g(a) = b, g(b) = 

c, and g(c) = a.Let f be the function from the set {a, b, c} to the set {1, 2, 3} such that f (a) = 

3, f (b) = 2, and f (c) = 1. What is the composition of f and g, and what is the composition of g 

and f ?

 Solution: (f ◦ g)(a) = f (g(a)) = f (b) = 2,(f ◦ g) (b) = f (g(b)) = f (c) = 1, 

 (f ◦ g)(c) = f (g(c)) = f (a) = 3. 

 g ◦ f is not defined, because the range of f is not a subset of the domain of g. 

 EXAMPLE 19 Let f and g be the functions from the set of integers to the set of integers 

defined by f (x) = 2x + 3 and g(x) = 3x + 2. What is the composition of f and g? What is the 

composition of g and f ?

 Solution: (f ◦ g)(x) = f (g(x)) = f (3x + 2) = 2(3x + 2) + 3 = 6x + 7

 And (g ◦ f )(x) = g(f (x)) = g(2x + 3) = 3(2x + 3) + 2 = 6x + 11. 

 When the composition of a function and its inverse is formed, in either order, an identity 

function is obtained. 

 When f (a) = b, and f -1(b) = a. Hence,(f -1 ◦ f )(a) = f -1(f (a)) = f -1(b) = a,                                

and (f ◦ f -1)(b) = f (f -1(b)) = f (a) = b. 

 Consequently f -1 ◦ f = ιA and f ◦ f -1 = ιB, where ιA and ιB are the identity                                        

functions on the sets A and B, (f -1)-1 = f . 
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 The Graphs of Functions

 DEFINITION 10 Let f be a function from the set A to the set B. 

The graph of the function f is the set of ordered pairs {(a, b) | a 

∈ A and f (a) = b}.

 EXAMPLE 20 Display the graph of the function f (x) = x2 from 

the set of integers to the set of integers.

 Solution: (x, f (x)) = (x, x2), The Graph of f (x) = x2 from Z to Z.

 
 DEFINITION 11 The floor function assigns to the real number                                                          

x the largest integer that is less than or equal to x. The value of the                                                 
floor function at x is denoted by 𝑥 . The ceiling function assigns to                                                   
the real number x the smallest integer that is greater than or equal to x. The value of the ceiling 
function at x is denoted by 𝑥 . 

 The floor function is often also called the greatest integer function. It is denoted by [x] .
 These are some values of the floor and ceiling functions:


1

2
= 0 , 

1

2
= 1 , −

1

2
= −1 , −

1

2
= 0 , 3.1 = 3 , 3.1 = 4, 7 = 7 , 7 = 7

 Useful Properties of the Floor and Ceiling Functions.
 (n is an integer, x is a real number)
 (1a) 𝑥  = n if and only if n ≤ x < n + 1 
 (1b) 𝑥  = n if and only if  n - 1 < x ≤ n
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 (2) x - 1 < 𝑥  ≤ x ≤ 𝑥  < x + 1

 (3a) −𝑥  = − 𝑥    (3b) −𝑥  = − 𝑥   

 (4a) 𝑥 + 𝑛  = 𝑥 +n   (4b) 𝑥 + 𝑛 = 𝑥 +n

 Factorial function f : N → Z+,denoted by f (n) = n!. 

 f (n) = 1 · 2 · · · (n - 1) · n [and f (0) = 0! = 1].

 EXAMPLE 21 We have f (1) = 1! = 1, f (2) = 2! = 1 · 2 = 2, 

 f (6) = 6! = 1 · 2 · 3 · 4 · 5 · 6 = 720,

 Partial Functions 

 DEFINITION 12 A partial function f from a set A to a set B is an assignment to each element 

a in a subset of A, called the domain of definition of f , of a unique element b in B. The sets A 

and B are called the domain and codomain of f , respectively. We say that f is undefined for 

elements in A that are not in the domain of definition of f . When the domain of definition of f 

equals A, we say that f is a total function. 

 A program may not produce a correct value because evaluating the function                             

may lead to an infinite loop or an overflow.

 EXAMPLE 22 The function f : Z → R where f (n) = √n is a partial function                         

from Z to R where the domain of definition is the set of nonnegative integers. 
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2.4 Sequences and Summations
 Sequences

 A sequence is a discrete structure used to represent an ordered list. For example, 1, 2, 3, 5, 8 is

a sequence with five terms and 1, 3, 9, 27, 81 , . . . , 3n, . . . is an infinite sequence.

 DEFINITION 1 A sequence is a function from a subset of the set of integers to a set S. We 

use the notation an to denote the image of the integer n.We call an a term of the sequence. 

 EXAMPLE 1 Consider the sequence {an}, where an =
1

𝑛
 ,The list of the terms of this sequence, 

beginning with a1, namely,a1,a2,a3,a4,….,starts with 1,
1

2
 , 

1

3
 , . . . . 

 DEFINITION 2 A geometric progression is a sequence of the form a, ar, ar2, . . . , arn, . . . 

where the initial term a and the common ratio r are real numbers. 

 A geometric progression is a exponential function f (x) =arx. 

 To find the sum of finite (n) terms of a GP,

 Sn = a(rn - 1) / (r - 1) 

 [OR] Sn = a(1 - rn) / (1 - r), if r ≠ 1.

 Sn = an, if r = 1.

 To find the sum of infinite terms of a GP,

S = a / (1 - r), if |r| < 1
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 DEFINITION 3 An arithmetic progression is a sequence of the form a,a + d,a + 2d,…,a + nd 

.where the initial term a and the common difference d are real numbers.

 An arithmetic progression is a linear function f (x) = dx + a. 

 Sum = n/2 × [2a + (n-1)d]

 If an is known: Sn=n/2 × [a1+an]

 These finite sequences are also called strings. 

 This string is also denoted by a1a2 . . . an.

 The length of a string is the number of terms in this string.

 The empty string(λ), is the string that has no terms. The empty string has length zero. 

 DEFINITION 4 A recurrence relation for the sequence {an} is an equation that expresses an in 

terms of one or more of the previous terms of the sequence, namely, a0, a1, . . . , an-1, for all 

integers n with n ≥ n0, where n0 is a nonnegative integer. A sequence is called a solution of a 

recurrence relation if its terms satisfy the recurrence relation. 

 EXAMPLE 2 Let {an} be a sequence that satisfies the recurrence relation                                  

an = an-1 + 3 for n = 1, 2, 3, . . . ,and suppose that a0 = 2. 

 What are a1, a2, and a3?

 Solution: a1 = a0 + 3 = 2 + 3 = 5.  a2 = 5 + 3 = 8 and a3 = 8 + 3 = 11. 
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 EXAMPLE 3 Let {an} be a sequence that satisfies the recurrence relation an = an-1 - an-2 for n =
2, 3, 4, . . . , and suppose that a0 = 3 and a1 = 5. What are a2 and a3?

 Solution: a2 = a1 - a0 = 5 - 3 = 2 and a3 = a2 -a1 = 2 - 5 = -3. 

 The initial conditions for a recursively defined sequence specify the terms that precede the

first term where the recurrence relation takes effect. 

 DEFINITION 5 The Fibonacci sequence, f0, f1, f2,…,is defined by the initial conditions f0=0, 

f1=1,and the recurrence relation fn=fn-1+ fn-2 for n =2,3,4,…. 

 EXAMPLE 4 Find the Fibonacci numbers f2,f3,f4,f5, and f6 the initial conditions f0=0 and f1=1 

 Solution:f2 = f1 + f0 = 1 + 0 = 1, f3 = f2 + f1 = 1 + 1 = 2, 
  f4 = f3 + f2 = 2 + 1 = 3, f5 = f4 + f3 = 3 + 2 = 5, f6 = f5 + f4 = 5 + 3 = 8. 
 We say that we have solved the recurrence relation together with the initial conditions when 

we find an explicit formula, called a closed formula,for the terms of the sequence. 
 EXAMPLE 5 Solve the recurrence relation and initial condition an=an-1+3 for n=1,2,3,….,and 

suppose that a1 = 2. 
 Solution: Starting with the initial condition a1 = 2, and working upward until we reach an to 

deduce a closed formula for the sequence. 

 a2 = 2 + 3 a3 = (2 + 3) + 3 = 2 + 3 · 2  

 a4 = (2 + 2 · 3) + 3 = 2 + 3 · 3 ..

  an = an-1 + 3 = (2 + 3 · (n - 2)) + 3 = 2 + 3(n - 1).
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 We can also successively apply the recurrence relation starting with the term an and working 
downward until we reach the initial condition a1 = 2 to deduce this same formula. 

 an = an-1 + 3 = (an-2 + 3) + 3 = an-2 + 3 · 2 
 = (an-3 + 3) + 3 · 2 = an-3 + 3 · 3 ..... 

 =a2 + 3(n - 2) = (a1 + 3) + 3(n - 2) = 2 + 3(n - 1). 
 The technique used in Example is called iteration. We have iterated, or repeatedly used,the 

recurrence relation. 
 The first approach is called forward substitution – we found successive terms beginning with 

the initial condition and ending with an. 
 The second approach is called backward substitution, because we began with an and iterated 

to express it in terms of falling terms of the sequence until we found it in terms of a1. 
 EXAMPLE 6 Find formulae for the sequences with the following first five terms: (a) 1, 1/2, 

1/4, 1/8, 1/16 (b) 1, 3, 5, 7, 9 (c) 1, -1, 1, -1, 1.
 Solution: (a) The sequence with an = 1/2n,n = 0, 1, 2, . . .. 
 This is a geometric progression with a = 1 and r = 1/2.
 (b) Each term is obtained by adding 2 to the previous term. The sequence with an = 2n + 1,      

n = 0, 1, 2, . . ..This is an arithmetic progression with a = 1 and d = 2.
 (c) The terms alternate between 1 and -1. The sequence with an = (-1)n,                                        

n = 0,1,2….This sequence is a geometric progression with a = 1 and r = -1 .
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 EXAMPLE 7 Conjecture a simple formula for an if the first 10 terms of the sequence {an} are 

1, 7, 25, 79, 241, 727, 2185, 6559, 19681, 59047.

 Solution: this sequence are generated by a formula involving 3n. 

 Comparing these terms with the corresponding terms of the sequence {3n}, we notice that the 

nth term is 2 less than the corresponding power of 3.

 an = 3n – 2 for 1 ≤ n ≤ 10 and conjecture that this formula holds for all n. 
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 Summations
 am+am+1, . . . , +an We use the notation σ𝐽=𝑚

𝑛 𝑎𝑗 , 𝛴𝑚≤𝑗≤𝑛𝑎j

 Here, the variable j is called the index of summation.
 Here, the index of summation runs through all integers starting with its lower limit m and 

ending with its upper limit n. 
 A large uppercase Greek letter sigma, 𝛴, is used to denote summation.

 ෍
𝐽=1

𝑛

𝑎𝜘𝑗 + 𝑏𝑦𝑗 = 𝑎 ෍
𝑗=1

𝑛

𝑥𝑗 + b෍
𝑗=1

𝑛

𝑦𝑗

  EXAMPLE 8 Use summation notation to express the sum of the first 100 terms of the 
sequence {aj}, whereaj = 1/j for j = 1, 2, 3, . . . .

 Solution: The lower limit for the index of summation is 1, upper limit is 100. ෌
𝐽=1

100
Τ1

𝐽 .

 EXAMPLE 9 What is the value of σ𝐽=1
5 𝑗2?

 Solution: σ𝐽=1
5 𝑗2 

= 12 + 22 + 32 + 42 + 52 = 1 + 4 + 9 + 16 + 25= 55. 

 EXAMPLE 10 σi=1
4 ∗ σj=1

3 𝑖𝑗

 Solution:  first expand the inner summation and then continue by                                      
computing the outer summation: 
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 σi=1
4 ∗ σj=1

3 𝑖𝐽= ෌
i=1

4
(𝑖 + 2𝑖 + 3𝑖)

 σi=1
4 6𝑖 =6 σi=1

4 𝑖 =6(1+2+3+4)=6*10=60 

 THEOREM 1 If a and r are real numbers and 

r ≠ 0, then

 σ𝑗=0
𝑛 𝑎𝑟𝑗 =ቐ

𝑎𝑟𝑛+1−𝑎

𝑟−1
 if r ≠ 1

𝑛 + 1 𝑎 if r = 1

 EXAMPLE 11 What is the value of 

𝛴𝑠𝜖{0,2,4}s? 

 Solution:  𝛴𝑠𝜖{0,2,4}s=0+2+4=6

 EXAMPLE 12 Find σ𝑘=50
100 𝑘2

 Solution: σ𝑘=50
100 𝑘2 = σ𝑘=1

100 𝑘2 - σ𝑘=1
49 𝑘2 

 = 
100×101×201

6
−

49×50×99

6
 

 =338350-40425=297925

 

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS



2.5 Cardinality of Sets

 DEFINITION 1 The sets A and B have the same cardinality if and only if there is a one-to-
one correspondence from A to B. When A and B have the same cardinality, we write |A| = |B|

 DEFINITION 2 If there is a one-to-one function from A to B, the cardinality of A is less than 
or the same as the cardinality of B and we write |A| ≤ |B|. Moreover, when |A| ≤ |B| and A and B 
have different cardinality, we say that the cardinality of A is less than the cardinality of B and 
we write |A| < |B|. 

 Countable Sets 

 DEFINITION 3 A set that is either finite or has the same cardinality as the set of positive 
integers is called countable. A set that is not countable is called uncountable. 

 EXAMPLE 1 Show that the set of odd positive integers is a countable set.

 Solution: Consider f (n) = 2n – 1 from Z+
 to the set of odd positive integers. 

 FIGURE 1 A One-to-One Correspondence Between Z+ and the Set of Odd Positive 
Integers.
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 EXAMPLES OF COUNTABLE AND UNCOUNTABLE SETS

 Set of all integers is countable. 

 EXAMPLE 2 Show that the set of positive rational numbers is countable.

 Solution: list the positive rational numbers as a sequence r1, r2, . . . , rn, . . . . 

 Every positive rational number is the quotient p/q of two positive integers. 

 Arrange the positive rational numbers by listing those with denominator q = 1 in the first row , 

q = 2 in the second row, and so on.

 First list the positive rational numbers p/q with p 

+ q = 2, followed by those with p + q = 3, 

followed by those with p + q = 4, and so on. 

 Whenever we encounter a number p/q that is 

already listed, we do not list it again. 

 For example,when we come to 2/2 = 1 we do not 

list it because we have already listed 1/1= 1. 

 Because all positive rational numbers are listed 

once, as the reader can verify, the set of positive 

rational numbers is countable. 
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 An Uncountable Set

 EXAMPLE 3 Show that the set of real numbers is an uncountable set. 
 Solution: To show that the set of real numbers is uncountable, we suppose that the set of real

numbers is countable and arrive at a contradiction. 

 Then, the subset of all real numbers that fall between 0 and 1 would also be countable 

(because any subset of a countable set is also countable). 

 The real numbers between 0 and 1 can be listed in some order, say, r1, r2, r3, . . . . Let the 

decimal representation of these real numbers be

 r1 = 0.d11d12d13d14 . . .
 r2 = 0.d21d22d23d24 . . .
 r3 = 0.d31d32d33d34 . . .

 Example r1 = 0.23794102…,r2 = 0.44590138…,r3 =0.09118764 … , and so on. 
 Therefore, all the real numbers between 0 and 1 cannot be listed, so the set of real numbers 

between 0 and 1 is uncountable.

 Any set with an uncountable subset is uncountable. 

 Hence, the set of real numbers is uncountable. 
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 THEOREM 1 If A and B are countable sets, then A ∪ B is also countable

 DEFINITION 4 We say that a function is computable if there is a computer program in some 

programming language that finds the values of this function. If a function is not computable 

we say it is uncomputable .

 Every infinite set S contains a countable subset. 

 Every subset of countable set is countable.

 Power set of countable set is uncountable.

 Set of all integers is countable

 Set of positive rational numbers is countable

 The set R is uncountable. 

 The set Z2 is countable. 

 Q is countable.

 The set of infinite sequences is uncountable.

 The set of finite sequences is countable.
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2.6 Relations and Their Properties 
 DEFINITION 1 Let A and B be sets. A binary relation from A to B is a subset of A × B 

 A binary relation from A to B is a set R of ordered pairs where the first element of each ordered pair 
comes from A and the second element comes from B. 

 We use the notation a R b to denote that (a, b) ∈ R and a 𝑛𝑜𝑡 𝑅 b to denote that (a, b) ∉R. 

 a is said to be related to b by R. 

 EXAMPLE 1 Let A be the set of cities in the U.S.A., and let B be the set of the states in the U.S.A. 
Define the relation R by specifying that (a, b) belongs to R if a city with name a is in the state b. For 
instance, (Naperville, Illinois), (Dells,Wisconsin), (Chicago, Illinois), (Middletown, New Jersey), 
are in R. 

 EXAMPLE 2 Let A = {0, 1, 2} and B = {a, b}. Then {(0, a), (0, b), (1, a), (2, b)} is a relation from A to 
B. Relations can be represented graphically, using arrows to represent ordered pairs. Another way to 
represent this relation is to use a table.
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 Functions as Relations The graph of f is the set of ordered pairs (a, b) such that b = f (a). 

Because the graph of f is a subset of A × B, it is a relation from A to B. 

 Relations on a Set 

 DEFINITION 2 A relation on a set A is a relation from A to A.

 In other words, a relation on a set A is a subset of A × A.

 EXAMPLE 3 Let A be the set {1, 2, 3, 4}. Which ordered pairs                                                    

are in the relation R = {(a, b) | a divides b}?

 Solution: R = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)} 

 EXAMPLE 4 How many relations are there on a set with n elements?

 Solution: A relation on a set A is a subset of A × A. Because A × A has n2 elements when A
has n elements, and a set with m elements has 2m subsets, there are 2n2 subsets of A × A. Thus,

there are 2n2 relations on a set with n elements. 

 For example, there are 232 = 29 = 512 relations on the set {a, b, c}. 
 If |A|=m and |B|=n then number of relations possible from A to B=2m*n

 If |A|=n then number of relations possible A to A=2n2

 Inverse of relation Let R be a relation from A to B .𝑅−1 ={(b,a) , (a,b)∈ R}                                

is called inversal of R and 𝑅−1 is a relation from B to A.

 Complement of a Relation ത𝑅=(𝐴 × B)-R Complement of R 
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 Diagonal Relation A relation R on a set A is called diagonal relation on A if R={(a,a)|∀a∈A}

 If A={1,2,3} , Δ𝐴={(1,1),(2,2),(3,3)}

 Properties of Relations

 DEFINITION 3 A relation R on a set A is called reflexive if (a, a) ∈ R , ∀a ∈ A 

 The diagonal relation on A is the smallest reflexive relation on A.

 Any superset of diagonal relation is also reflexive .

 Let A={a,b,c}

 R1= {(a,a),(b,b),(c,c)} smallest reflexive relation

 R2= {(a,a),(a,b),(b,b),(c,a),(c,c)}

 R3=A ×A Largest reflexive relation 

 Number of Reflexive Relations

 Consider a set A with n elements , Say A ={1, 2, ....... n−1, n }.|A ×A|=n2

 Out of n2 elements n elements are compulsory for relation to be reflexive.

 i.e (1, 1) (2, 2) (3, 3) .... (n, n)

 Remaining n2 − n elements, we have choice of filling i.e either they are present or absent.

 Hence, Total number of reflexive relation are 2n2 − n =2n(n-1).

 Number of relations not reflexive = 2n2-2n2 − n 
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 EXAMPLE 5 Consider the following relations on {1, 2, 3, 4}:

 R1 = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)},

 R2 = {(1, 1), (1, 2), (2, 1)},

 R3 = {(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)},

 R4 = {(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)},

 R5 = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)},

 R6 = {(3, 4)}. Which of these relations are reflexive?

 Solution: The relations R3 and R5 are reflexive because they both contain all pairs of the form 

(a, a), namely, (1, 1), (2, 2), (3, 3), and (4, 4). 

 R1, R2, R4, and R6 are not reflexive because (3, 3) is not in any of these relations. 

 EXAMPLE 6 Consider these relations on the set of integers:

 R1 = {(a, b) | a ≤ b},  R2 = {(a, b) | a > b}, 

 R3 = {(a, b) | a = b or a = -b}, R4 = {(a, b) | a = b}, 

 R5 = {(a, b) | a = b + 1},  R6 = {(a, b) | a + b ≤ 3}. 

 Which of these relations are reflexive?

 Solution: R1 (because a ≤ a for every integer a),R3, and R4. 
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 DEFINITION 4 A relation R on a set A is called symmetric if (b, a) ∈ R whenever (a, b) ∈ R, 

for all a, b ∈ A.A relation R on a set A such that for all a, b ∈ A, if (a, b) ∈ R and (b, a) ∈ R, 

then a = b is called antisymmetric. 

 The relation R on the set A is symmetric if ∀a∀b((a, b) ∈ R → (b, a) ∈ R). Similarly, the 

relation R on the set A is antisymmetric if ∀a∀b(((a, b) ∈ R ∧ (b, a) ∈ R) → (a = b)). 

 EXAMPLE 7 if A={a,b,c} then 

 R1={ }smallest symmetric / antisymmetric relation on A

 R2={(b,b)(c,c)} symmetric / antisymmetric relation 

 R3={(a,b),(b,a),(b,c)(c,b)} symmetric but not antisymmetric relation 

 R4=A×A largest symmetric relation on A.

 A relation is symmetric if and only if a is related to b implies that b is related to a.

 A relation is antisymmetric if and only if there are no pairs of distinct elements a and b with a 

related to b and b related to a. 

 The terms symmetric and antisymmetric are not opposites,because a relation can have both of 

these properties or may lack both of them .

 If A is a set with n elements then number of symmetric relations possible =2
𝑛 𝑛+1

2

 Numbers of Symmetric relations possible with diagonal pair=2n
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 Numbers of Symmetric relation possible with non diagonal pair= 2
𝑛 𝑛−1

2

 Total Symmetric relations possible = 2n *2
𝑛 𝑛−1

2 = 2
2𝑛+𝑛 𝑛−1

2 = 2
2𝑛+𝑛2−𝑛

2 = 2
𝑛2+𝑛

2

 EXAMPLE 8 Which of the relations from Example 5 are symmetric and which are 

antisymmetric?

 Solution: R1 = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)},

 R2 = {(1, 1), (1, 2), (2, 1)},

 R3 = {(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)},

 The relations R2 and R3 are symmetric, because in each case (b, a) belongs to the relation 

whenever (a, b) does. 

 R4 = {(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)},

 R5 = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)},

 R6 = {(3, 4)}.

 R4, R5, and R6 are all antisymmetric. For each of these relations there is no pair of elements

a and b with a ≠ b such that both (a, b) and (b, a) belong to the relation. 

 EXAMPLE 9 Which of the relations from Example 6 are symmetric and                          

which are antisymmetric?
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 R1 = {(a, b) | a ≤ b}, R2 = {(a, b) | a > b}, R3 = {(a, b) | a = b or a = -b}, 

 R4 = {(a, b) | a = b}, R5 = {(a, b) | a = b + 1}, R6 = {(a, b) | a + b ≤ 3}. 

 Solution: The relations R3, R4, and R6 are symmetric. 

 R3 is symmetric, for if a = b or a = -b,then b = a or b = -a. 

 R4 is symmetric because a = b implies that b = a. 

 R6 is symmetric because a + b ≤ 3 implies that b + a ≤ 3. 

 The relations R1, R2, R4, and R5 are antisymmetric. 

 R1 is antisymmetric because the inequalities a ≤ b and b ≤ a imply that a = b. 

 R2 is antisymmetric because it is impossible that a > b and b > a. 

 R4 is antisymmetric, because two elements are related if they are equal. 

 R5 is antisymmetric because it is impossible that a = b + 1 and b = a + 1. 

 EXAMPLE 10 Is the “divides” relation on the set of positive integers symmetric? Is it 
antisymmetric?

 Solution: Not symmetric because 1 devides 2, but 2 not devides 1. 

 Antisymmetric, if a and b are positive integers with a|b and b|a, then a = b
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  DEFINITION 5 A relation R on a set A is called transitive if whenever (a, b) ∈ R and (b, c) ∈ 

R, then (a, c) ∈ R, for all a, b, c ∈ A.

 ∀a∀b∀c(((a, b) ∈ R ∧ (b, c) ∈ R) → (a, c) ∈ R).

 if A={a,b,c} then 

 R1={ }smallest transitive relation on A

 R2={(a,a),(b,b),(c,c)} 

 R3={(a,b),(a,c)}

 R4={(a,b),(b,c),(a,c)}

 R5=A×A largest transitive relation on A.

 ≤,≥ ,<,> =,/,⊆ are transitive.

 EXAMPLE 11 Which of the relations in Example 5 are transitive?

 Solution: R1 = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)}, 

 R1 is not transitive because (3, 4) and (4, 1) belong to R1, but (3, 1) does not. 

 R2 = {(1, 1), (1, 2), (2, 1)},

 R2 is not transitive because (2, 1) and (1, 2) belong to R2, but (2, 2) does not. 

 R3 = {(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)},

 R3 is not transitive because (4, 1) and (1, 2) belong to R3, but (4, 2) does not.
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 R4 = {(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)},

 R4 is transitive, because (3, 2) and (2, 1), (4, 2) and (2, 1), (4, 3) and (3, 1), and (4, 3) and (3, 

2) are the only such sets of pairs, and (3, 1), (4, 1), and (4, 2) belong to R4. 

 R5 = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)},

 R6 = {(3, 4)}.

 R4, R5, and R6 are transitive. 

 EXAMPLE 12 Which of the relations are transitive?

 R1 = {(a, b) | a ≤ b}, R2 = {(a, b) | a > b}, R3 = {(a, b) | a = b or a = -b}, 

 R4 = {(a, b) | a = b}, R5 = {(a, b) | a = b + 1}, R6 = {(a, b) | a + b ≤ 3}. 

 Solution: The relations R1, R2, R3, and R4 are transitive. 

 R1 is transitive because a ≤ b and b ≤ c imply that a ≤ c. 

 R2 is transitive because a > b and b > c imply that a > c. 

 R3 is transitive because a = ±b and b = ±c imply that a = ±c. 

 R4 is clearly transitive , a=b and b=c imply that a=c. 

 R5 is not transitive because (2, 1) and (1, 0) belong to R5, but (2, 0) does not. 

 R6 is not transitive because (2, 1) and (1, 2) belong to R6, but (2, 2) does not. 
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 EXAMPLE 13 Is the “divides” relation on the set of positive integers transitive?

 Solution: Suppose that a divides b and b divides c. Then there are positive integers k and l

such that b = ak and c = bl. Hence, c = a(kl), so a divides c. 

 It follows that this relation is transitive. 

 Combining Relations

 Because relations from A to B are subsets of A × B, two relations from A to B can be combined

in any way two sets can be combined. 

 EXAMPLE 14 Let A = {1, 2, 3} and B = {1, 2, 3, 4}. The relations R1 = {(1, 1), (2, 2), (3, 3)} 

and R2 = {(1, 1), (1, 2), (1, 3), (1, 4)} can be combined to obtain

 R1 ∪ R2 = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (3, 3)},

 R1 ∩ R2 = {(1, 1)},

 R1 - R2 = {(2, 2), (3, 3)},

 R2 - R1 = {(1, 2), (1, 3), (1, 4)}. 
 DEFINITION 6 Let R be a relation from a set A to a set B and S a relation from B to a set C. 

    The composite of R and S is the relation consisting of ordered pairs (a, c), where 

    a ∈ A, c ∈ C, and for which there exists an element b ∈ B such that (a, b) ∈ R 

    and (b, c) ∈ S. We denote the composite of R and S by S ◦R.
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 Computing the composite of two relations requires that we find elements that are the second

element of ordered pairs in the first relation and the first element of ordered pairs in the second

relation.

 EXAMPLE 15 What is the composite of the relations R and S, where R is the relation from{1, 

2, 3}to{1, 2, 3, 4} with R = {(1, 1), (1, 4), (2, 3), (3, 1), (3, 4)} and S is the relation from {1, 2, 

3, 4} to {0, 1, 2} with S = {(1, 0), (2, 0), (3, 1), (3, 2), (4, 1)}?

 Solution : S ◦ R = {(1, 0), (1, 1), (2, 1), (2, 2), (3, 0), (3, 1)}.

 DEFINITION 7 Let R be a relation on the set A. The powers Rn, n = 1, 2, 3, . . . , are defined 

recursively by R1 = R and Rn+1 = Rn ◦ R.
 The definition shows that R2 = R ◦ R, R3 = R2 ◦ R = (R ◦ R)◦ R, and so on

 EXAMPLE 16 Let R = {(1, 1), (2, 1), (3, 2), (4, 3)}. Find the powers Rn, n = 2, 3, 4, . . . .
 Solution: Because R2 = R ◦R, we find that R2 = {(1, 1), (2, 1), (3, 1), (4, 2)}. 
 R3 = R2 ◦R, R3 = {(1, 1), (2, 1), (3, 1), (4, 1)}.
 R4 is the same as R3, so R4 = {(1, 1), (2, 1), (3, 1), (4, 1)}. 
 It also follows that Rn = R3 for n = 5, 6, 7, . . . . 
 THEOREM 1 The relation R on a set A is transitive if and only if Rn ⊆ R                                  

for n = 1, 2, 3, . . . . 
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2.7 n-ary Relations and Their Applications

 DEFINITION 1 Let A1, A2, . . . , An be sets. An n-ary relation on these sets is a subset of A1 × 
A2 × · · · × An.The sets A1, A2, . . . , An are called the domains of the relation, and n is called its 
degree.

 EXAMPLE 1 Let R be the relation on N × N × N consisting of triples (a, b, c), where a, b, 
and c are integers with a < b < c. Then(1, 2, 3) ∈ R, but(2, 4, 3) ∉ R. The degree of this 
relation is 3. Its domains are all equal to the set of natural numbers. 

 Databases and Relations

 We can represent databases in relational data model, based on the concept of a relation.

 A database consists of records, which are n-tuples, made up of fields. 

 The fields are the entries of the n-tuples. 

 For instance, a database of student records may be made up of fields containing the name, 
student number, major, and grade point average of the student. 
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2.8 Representing Relations 
 Representing Relations Using Matrices

A relation between finite sets can be represented using a zero–one matrix.

 mij=1 if (ai,bj) ∈ R, 0 if (ai,bj) not ∈ R

 The zero–one matrix representing R has a 1 as its (i, j) entry when ai is related to bj, and a 0 in 
this position if ai is not related to bj. 

 EXAMPLE 1 Suppose that A = {1, 2, 3} and B = {1, 2}. Let R be the relation from A to B 
containing (a, b) if a ∈ A, b ∈ B, and a > b. 

 Solution: Because R = {(2, 1), (3, 1), (3, 2)}, the matrix for R is

 The matrix of a relation on a set, which is a square matrix, can be used to determine whether 

the relation has certain properties. 

 A relation R on A is reflexive if (a, a) ∈ R whenever a ∈ A. R is reflexive if all the elements on 

the main diagonal of MR are equal to 1.

 The relation R is symmetric if (a, b) ∈ R implies that (b, a) ∈ R.

 R is symmetric if and only if mij = mji, for all pairs of integers i and j.

 R is symmetric if and only if MR = (MR)t

 The relation R is antisymmetric if and only if (a, b) ∈ R and (b, a) ∈ R                                      
imply that a = b.
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 The matrix of an antisymmetric relation has the property that if mij = 1 with i ≠ j, then mji = 0. 
Or, in other words, either mij = 0 or mji = 0 when i ≠ j. 

 The Zero–One Matrices for Reflexive  Symmetric     Antisymmetric 

 EXAMPLE 2 Suppose that the relation R on a set is represented by the matrix 
 Is R reflexive, symmetric, and/or antisymmetric?
 Solution: Because all the diagonal elements of this matrix are equal to 1, R is reflexive.
 Because MR is symmetric, it follows that R is symmetric. R is not antisymmetric. 
 The Boolean operations join and meet can be used to find the matrices representing the union 

and the intersection of two relations. 

 EXAMPLE 3 Suppose that the relations R1 and R2 on a set A are represented by the matrices
 What are the matrices representing R1 ∪ R2 and R1 ∩ R2? M
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 Representing Relations Using Digraphs 
 DEFINITION 1 A directed graph, or digraph, consists of a set V of vertices (or nodes) 

together with a set E of ordered pairs of elements of V called edges (or arcs). The vertex a is 
called the initial vertex of the edge (a, b), and the vertex b is called the terminal vertex of this 
edge. 

 An edge of the form (a, a) is represented using an arc from the vertex a back to                          
itself. Such an edge is called a loop. 

 EXAMPLE 4 The directed graph with vertices a, b, c, and d, and edges (a, b),                         
(a, d), (b, b),  (b, d), (c, a), (c, b), and (d, b) 

 EXAMPLE 5 The directed graph of the relation R = {(1, 1), (1, 

3), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (4, 1)} on the set {1, 2, 3, 4} 

 EXAMPLE 6 What are the ordered pairs in the relation R 

represented by the directed graph shown in Figure 

 Solution: The ordered pairs (x, y) in the relation are R = {(1, 3), (1, 4), (2, 1), (2, 
2), (2, 3), (3, 1), (3, 3), (4, 1), (4, 3)}.

 The directed graph representing a relation can be used to determine whether the 
relation has various properties. 

 A relation is reflexive if and only if there is a loop at every vertex of the directed 
graph, so that every ordered pair of the form (x, x) occurs in the relation.
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 A relation is symmetric if and only if for every edge between distinct vertices in its digraph

there is an edge in the opposite direction, so that (y, x) is in the relation whenever (x, y) is

in the relation. 

 Similarly, a relation is antisymmetric if and only if there are never two edges in opposite 

directions between distinct vertices. 

 Finally, a relation is transitive if and only if whenever there is an edge from a vertex x to a 

vertex y and an edge from a vertex y to a vertex z, there is an edge from x to z .

 EXAMPLE 10 Determine whether the relations for the directed graphs shown in Figure are 

reflexive, symmetric, antisymmetric, and/or transitive. 

 Solution: Because there are loops at every vertex of the directed 

graph of R, it is reflexive. 

 R is neither symmetric nor antisymmetric because there is an edge 

from a to b but not one from b to a.

 Finally, R is not transitive because there is an edge from a to b and 

an edge from b to c, but no edge from a to c. 

 Because loops are not present at all the vertices of the directed 

graph of S, this relation is not reflexive. 
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 It is symmetric and not antisymmetric, because every edge between distinct vertices is 

accompanied by an edge in the opposite direction. 

 It is also not hard to see from the directed graph that S is not transitive, because (c, a) and (a, 

b) belong to S, but (c, b) does not belong to S. 

   2.9 Closures of Relations 

 Introduction : let R be a relation on a set A. R may or may not have some property P, such as

reflexivity, symmetry, or transitivity. If there is a relation S with property P containing R such

that S is a subset of every relation with property P containing R, then S is called the closure of 

R with respect to P.

 Closures : The relation R = {(1,1),(1,2),(2,1),(3,2)} on the set A = {1, 2, 3} is not reflexive. 

 How can we produce a reflexive relation containing R that is as small as possible? This can be 

done by adding (2, 2) and (3, 3) to R, because these are the only pairs of the form (a, a) that 

are not in R.

 Because this relation contains R, is reflexive, and is contained within every reflexive relation 

that contains R, it is called the reflexive closure of R.

 The reflexive closure of R can be formed by adding to R all pairs of the form                          

(a, a) with a ∈ A, not already in R. The reflexive closure of R =R∪Δ, where              

Δ={(a,a)|a∈A} is the diagonal relation on A.
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  EXAMPLE 1 What is the reflexive closure of the relation R = {(a,b)|a<b} on the set of 

integers?

 Solution: The reflexive closure of R is R∪Δ= {(a, b)|a < b} ∪ {(a, a)|a ∈ Z} = {(a, b) | a ≤ b}. 
❖ The relation {(1, 1), (1, 2), (2, 2), (2, 3), (3, 1), (3, 2)} on {1, 2, 3} is not symmetric. 

 How can we produce a symmetric relation that is as small as possible and contains R? 

 To do this,we need only add (2, 1) and (1, 3), because these are the only pairs of the form (b, a) 
with (a, b) ∈ R that are not in R. 

 This new relation is symmetric and contains R. 

 This new relation is called the symmetric closure of R. 

 The symmetric closure of a relation can be constructed by taking the union of a relation with 

its inverse that is, R ∪ R-1 is the symmetric closure of R, where R-1 = {(b, a) | (a, b) ∈ R}.
 EXAMPLE 2 What is the symmetric closure of the relation R = {(a, b) | a > b} on the set of 

positive integers?

 Solution: The symmetric closure of R is the relation R∪R-1 = {(a, b)|a > b} ∪ {(b, a) | a > b} = 
{(a, b) | a ≠ b}. 

 Suppose that a relation R is not transitive. How can we produce a transitive                     

relation that contains R such that this new relation is contained within any                       

transitive relation.
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 Consider the relation  R = {(1, 3), (1, 4), (2, 1), (3, 2)} on the set {1, 2, 3, 4}. This relation is 

not transitive because it does not contain all pairs of the form (a, c) where (a, b) and (b, c) are 

in R.

 The pairs of this form not in R are (1, 2), (2, 3), (2, 4), and (3, 1). Adding these pairs does not 

produce a transitive relation, because the resulting relation contains (3, 1) and (1, 4) but does 

not contain (3, 4). 

 This shows that constructing the transitive closure of a relation is more complicated than

constructing either the reflexive or symmetric closure. 

 The transitive closure of a relation can be found by adding new ordered pairs that must be 

present and then repeating this process until no new ordered pairs are needed. 

 Paths in Directed Graphs 
 DEFINITION 1 A path from a to b in the directed graph G is a sequence of edges (x0, x1), (x1, 

x2), (x2, x3), . . . , (xn-1, xn) in G, where n is a nonnegative integer, and x0 = a and xn = b,that is, a 

sequence of edges where the terminal vertex of an edge is the same as the initial vertex in the 

next edge in the path. This path is denoted by x0, x1, x2, . . . , xn-1, xn and has length n. We view 

the empty set of edges as a path of length zero from a to a. A path of length n ≥ 1 that begins 

and ends at the same vertex is called a circuit or cycle. 
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 EXAMPLE 3 Which of the following are paths in the directed graph                                    

shown in Figure : a, b, e, d; a, e, c, d, b; b, a, c, b, a, a, b; d, c; c, b, a;                                                   

e, b, a, b, a, b, e? What are the lengths of those that are paths?

Which of the paths in this list are circuits?

 Solution: Because each of (a, b), (b, e), and (e, d) is an edge, a, b, e, d                                             

is a path of length three.

 Because (c, d) is not an edge, a, e, c, d, b is not a path. 

 Also, b, a, c, b, a, a, b is a path of length six because (b, a), (a, c), (c, b), (b, a), (a, a), and (a, 

b) are all edges. 

 We see that d, c is a path of length one, because (d, c) is an edge. 

 Also c, b, a is a path of length two, because (c, b) and (b, a) are edges. 

 All of (e, b), (b, a), (a, b), (b, a), (a, b), and (b, e) are edges, so e, b, a, b, a, b, e is a path of 

length six.

 The two paths b, a, c, b, a, a, b and e, b, a, b, a, b, e are circuits because                               

they begin and end at the same vertex. 

 The paths a, b, e, d; c, b, a; and d, c are not circuits. 
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 There is a path from a to b in R if there is a sequence of elements a, x1, x2, . . . , xn-1, b with (a, 

x1) ∈ R, (x1, x2) ∈ R, . . . , and (xn-1, b) ∈ R. 

 Transitive Closures

 DEFINITION 2 Let R be a relation on a set A. The connectivity relation R∗ consists of the 

pairs (a, b) such that there is a path of length at least one from a to b in R.

 THEOREM 2 The transitive closure of a relation R equals the connectivity relation R∗ 

 THEOREM 3 Let MR be the zero–one matrix of the relation R on a set with n elements. Then 

the zero–one matrix of the transitive closure R∗ is MR∗ = MR ∨ MR
[2] ∨ MR

[3] ∨ · · · ∨ MR
[n]. 

 Warshall’s algorithm can be used for finding transitive Closures.
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2.10 Equivalence Relations 
 DEFINITION 1 A relation on a set A is called an equivalence relation if it is reflexive, 

symmetric, and transitive.
 DEFINITION 2 Two elements a and b that are related by an equivalence relation are called 

equivalent. The notation a ∼ b is often used to denote that a and b are equivalent elements 
with respect to a particular equivalence relation. 

 EXAMPLE 1 A={a,b,c}
 R1={(a,a)(b,b)(c,c)} smallest equivalence relation on A.
 R2={(a,a)(b,b)(c,c)(a,b)(b,a)}

 R2=A ×A largest equivalence relation on A.

 EXAMPLE 2 Let R be the relation on the set of integers such that aRb if and only if a = b or 
a = -b. we showed that R is reflexive, symmetric, and transitive.It follows that R is an 
equivalence relation.

 EXAMPLE 3 Let R be the relation on the set of real numbers such that aRb if and only if       
a - b is an integer.Is R an equivalence relation? 

 Solution: Because a - a = 0 is an integer for all real numbers a, aRa for all real numbers a.
Hence, R is reflexive. 

 Now suppose that aRb. Then a - b is an integer, so b - a is also an integer.                           
Hence, bRa. It follows that R is symmetric. 
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 If aRb and bRc, then a - b and b – c are integers. Therefore, a - c = (a - b) + (b - c) is also an 

integer. Hence, aRc. Thus, R is transitive. 

 Consequently, R is an equivalence relation.

 Equivalence Classes 

 DEFINITION 3 Let R be an equivalence relation on a set A. The set of all elements that are 

related to an element a of A is called the equivalence class of a. The equivalence class of a 
with respect to R is denoted by [a]R. When only one relation is under consideration, we can 

delete the subscript R and write [a] for this equivalence class. 

 If R is an equivalence relation on a set A, the equivalence class of the element a is [a]R = {s | (a, 
s) ∈ R}.

 If b ∈ [a]R, then b is called a representative of this equivalence class. 

 EXAMPLE 4 What is the equivalence class of an integer for the equivalence relation of 

Example 2?

 Solution: Because an integer is equivalent to itself and its negative in this equivalence relation,

it follows that [a] = {-a, a}. 
 This set contains two distinct integers unless a = 0. 

 For instance,[7] = {-7, 7}, [-5] = {-5, 5}, and [0] = {0}. 
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 EXAMPLE 5 What are the equivalence classes of 0 and 1 for congruence modulo 4?

 Solution: The equivalence class of 0 contains all integers a such that a ≡ 0 (mod 4). 

 The integers in this class are those divisible by 4. 

 Hence, the equivalence class of 0 for this relation is [0] = {. . . , -8, -4, 0, 4, 8, . . . }.
 The equivalence class of 1 contains all the integers a such that a ≡ 1 (mod 4). 

 The integers in this class are those that have a remainder of 1 when divided by 4. 

 Hence, the equivalence class of 1 for this relation is [1] = {. . . , -7, -3, 1, 5, 9, . . . }. 
 The equivalence classes of the relation congruence modulo m are called the congruence 

classes modulo m. 

 The congruence class of an integer a modulo m is denoted by [a]m, 

 so [a]m = {. . . , a - 2m, a - m, a, a + m, a + 2m, . . .}. 
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2.11 Partial Orderings 
 DEFINITION 1 A relation R on a set S is called a partial ordering or partial order if it is 

reflexive, antisymmetric, and transitive. A set S together with a partial ordering R is called a 

partially ordered set, or poset, and is denoted by (S, R). Members of S are called elements of 

the poset. 

 EXAMPLE 1 if A={a,b,c}

 R1={(a,a)(b,b)(c,c)} smallest poset and only relation which is both equivalence and poset.

 R2={(a,a)(b,b)(c,c)(a,b)(a,c)}

 EXAMPLE 2 Show that the “greater than or equal” relation (≥) is a partial ordering on the set 

of integers. 

 Solution: Because a ≥ a for every integer a, ≥ is reflexive. If a ≥ b and b ≥ a, then a = b.

 Hence, ≥ is antisymmetric. Finally, ≥ is transitive because a ≥ b and b ≥ c imply that a ≥ c. 

 It follows that ≥ is a partial ordering on the set of integers and (Z, ≥) is a poset.

 EXAMPLE 3 The divisibility relation | is a partial ordering on the set of positive integers, 

because it is reflexive, antisymmetric, and transitive.

 EXAMPLE 4 Show that the relation ⊆ is a partial ordering on the power set of a set S. 

 Solution: Because A ⊆ A whenever A is a subset of S, ⊆ is reflexive. 

 It is antisymmetric because A ⊆ B and B ⊆ A imply that A = B. 
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 Finally, ⊆ is transitive, because A ⊆ B and B ⊆ C imply that A ⊆ C. 

 Hence, ⊆ is a partial ordering on P (S), and (P (S), ⊆) is a poset.

 EXAMPLE 5 Let R be the relation on the set of people such that xR y if x and y are people 

and x is older than y. Show that R is not a partial ordering. 

 Solution: Note that R is antisymmetric because if a person x is older than a person y, then y

is not older than x. That is, if xR y, then y not R x. 

 The relation R is transitive because if person x is older than person y and y is older than person 

z, then x is older than z. That is, if xR y and yRz, then xR z. 

 However, R is not reflexive, because no person is older than himself or herself. 

 That is, x not R x for all people x. It follows that R is not a partial ordering. 

 DEFINITION 2 The elements a and b of a poset (S,≤ ) are called comparable if either a ≤ b 

or b ≤ a.When a and b are elements of S such that neither a ≤ b nor b ≤ a, a and b are called 

incomparable.

 EXAMPLE 6 In the poset (Z+, |), are the integers 3 and 9 comparable?                                 

Are 5 and 7 comparable?

 Solution: The integers 3 and 9 are comparable, because 3 | 9. The integers                                      

5 and 7 are incomparable, because 5  not | 7 and 7 not | 5. 

 When every two elements in the set are comparable, the relation is called a total ordering. 
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 DEFINITION 3 If (S, ≤ ) is a poset and every two elements of S are comparable, S is called a 

totally ordered or linearly ordered set, and is called a total order or a linear order. A totally 

ordered set is also called a chain. 

 EXAMPLE 7 The poset (Z, ≤) is totally ordered, because a ≤ b or b ≤ a whenever a and b are 

integers. 

 EXAMPLE 8 The poset (Z+, | ) is not totally ordered because it contains elements that are 

incomparable, such as 5 and 7. 

 DEFINITION 4 (S, ≤ ) is a well-ordered set if it is a poset such that is a total ordering and 

every nonempty subset of S has a least element.

 Lexicographic Order 

 The lexicographic ordering ≤on A1 × A2 is defined by specifying that one pair is less than a 

second pair if the first entry of the first pair is less than (in A1) the first entry of the second 

pair, or if the first entries are equal, but the second entry of this pair is less than (in A2) the 

second entry of the second pair. In other words, (a1, a2) is less than (b1, b2), that is,

 (a1, a2) ≺ (b1, b2),
 either if a1 ≺1 b1 or if both a1 = b1 and a2 ≺2 b2. 

 EXAMPLE 9 Determine whether (3, 5) ≺ (4, 8), whether (3, 8) ≺ (4, 5),                                  
and whether (4, 9) ≺ (4, 11) in the poset (Z × Z,≤ ), 
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 Solution: Because 3 < 4, it follows that (3, 5) ≺ (4, 8) and that (3, 8) ≺ (4, 5). 
 We have (4, 9) ≺ (4, 11), because the first entries of (4, 9) and (4, 11) are the same but 9 < 11.

 Hasse Diagrams  
 Consider the directed graph for the partial ordering {(a, b) |                                                             

a ≤ b} on the set {1, 2, 3, 4}, shown in Figure (a). 

 Because this relation is a partial ordering, it is reflexive,

and its directed graph has loops at all vertices. 

 Consequently, we do not have to show these loops because                                                     

they must be present; 

 In Figure (b) loops are not shown. Because a partial ordering                                                       

is transitive, we do not have to show those edges that must be present because of transitivity. 

 In Figure (c) the edges (1, 3), (1, 4), and (2, 4) are not shown because they must be present. 

 If we assume that all edges are pointed “upward”, we do not have to show the directions of the 

edges; Figure (c) does not show directions

 The resulting diagram is called the Hasse diagram of (S,≤ ), named after                                

the twentieth-century German mathematician Helmut Hasse.

 Let (S, ≤ ) be a poset. We say that an element y ∈ S covers an element                               

x ∈ S if x ≺ y and there is no element z ∈ S such that x ≺ z ≺ y.
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 The set of pairs (x, y) such that y covers x is called the covering relation of (S, ≤).

 EXAMPLE 10 Draw the Hasse diagram representing the partial ordering {(a, b)|a divides b} 
on {1, 2, 3, 4, 6, 8, 12}.

 Solution: Remove all loops, as shown in Figure (b). Then delete all the edges implied by the 

transitive property.These are (1, 4), (1, 6), (1, 8), (1, 12), (2, 8), (2, 12), and (3, 12). 

 Arrange all edges to point upward, and delete all arrows to obtain the Hasse diagram. 

 The resulting Hasse diagram is shown in Figure (c). 
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 EXAMPLE 11 Draw the Hasse diagram for the partial ordering {(A, B) 
| A ⊆ B} on the power set P (S) where S = {a, b, c}. 

 Maximal and Minimal Elements
 An element of a poset is called maximal if it is not less than any 

element of the poset. 
 That is, a is maximal in the poset (S,≤ ) if there is no b ∈ S such that 

a ≺ b. 
 Similarly, an element of a poset is called minimal if it is not greater 

than any element of the poset. 
 That is, a is minimal if there is no element b ∈ S such that b ≺ a. 
 Maximal and minimal elements are easy to spot using a Hasse 

diagram. 
 They are the “top” and “bottom” elements in the diagram. 
 EXAMPLE 12 Which elements of the poset ({2, 4, 5, 10, 12, 20, 25}, 

|) are maximal, and which are minimal? 
 Solution: The Hasse diagram in Figure for this poset shows that the 

maximal elements are 12, 20, and 25, and the minimal elements are 2 
and 5. 

 a poset can have more than one maximal element and more than one 
minimal element. 
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 Sometimes there is an element in a poset that is greater than every other element. 
 Such an element is called the greatest element. 
 That is, a is the greatest element of the poset (S,≤ ) if b ≤ a for all b ∈ S. 
 The greatest element is unique when it exists .
 An element is called the least element if it is less than all the other elements in the poset. 
 That is, a is the least element of (S, ≤ ) if a ≤ b for all b ∈ S. 
 The least element is unique when it exists. 
 EXAMPLE 13 Determine whether the posets represented by each of the Hasse diagrams in 

Figure have a greatest element and a least element. 

 Solution: (a)The least element of the poset is a no greatest element. 

 (b) The poset has neither a least nor a greatest element. 

 (c) The poset has no least element greatest element is d. 

 (d) The poset has least element a and greatest element d. 
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 Solution: The upper bounds of {a, b, c} are e, f, j, and h, and 

its only lower bound is a. 

 There are no upper bounds of {j, h}, and its lower bounds are 

a, b, c, d, e, and f . 

 The upper bounds of {a, c, d, f } are f , h, and j, and its lower 

bound is a.

 EXAMPLE 14 Let S be a set. Determine whether there is a greatest element and a least 

element in the poset (P (S), ⊆). 

 Solution: The least element is the empty set, because ∅ ⊆ T for any subset T of S. 

 The set S is the greatest element in this poset, because T ⊆ S whenever T is a subset of S.

 Sometimes it is possible to find an element that is greater than or equal to all the elements in a 

subset A of a poset (S,≤ ). 

 If u is an element of S such that a ≤ u ,∀a ∈ A,then u is called an upper bound of A. 

 Likewise, there may be an element less than or equal to all the elements in A. 

 If l is an element of S such that l ≤ a ,∀a ∈ A, then l is called a lower bound of A.

 EXAMPLE 15 Find the lower and upper bounds of the subsets {a, b, c}, {j, h}, and {a, c, d, f 

} in the poset with the Hasse diagram shown in Figure.
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 The element x is called the least upper bound of the subset A if x is an upper bound that

is less than every other upper bound of A. 

 That is, x is the least upper bound of A if a≤ x whenever a ∈ A, and x ≤ z whenever z is an 

upper bound of A. 

 Similarly, the element y is called the greatest lower bound of A if y is a lower bound of

A and z ≤ y whenever z is a lower bound of A. 

 The greatest lower bound and least upper bound of A is unique if it exists. 

 The greatest lower bound and least upper bound of a subset A are denoted by                          

glb(A) and lub(A), respectively. 

 EXAMPLE 16 Find the greatest lower bound and the least upper bound of                                 

{b, d, g}, if they exist, in the poset shown in Figure.

 Solution: The upper bounds of {b, d, g} are g and h. Because g ≺ h, g is 

the least upper bound.

 The lower bounds of {b, d, g} are a and b. Because a ≺ b, b is the greatest 

lower bound. 

 EXAMPLE 17 Find the greatest lower bound and the least upper bound of 

the sets {3, 9, 12} and {1, 2, 4, 5, 10}, if they exist, in the poset (Z+, |).
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 Solution: An integer is a lower bound of {3, 9, 12} if 3, 9, and 12 are divisible by this integer.

 The only such integers are 1 and 3. 

 Because 1 | 3, 3 is the greatest lower bound of {3, 9, 12}.

 The only lower bound for the set {1, 2, 4, 5, 10} with respect to | is the element 1. 

 Hence, 1 is the greatest lower bound for {1, 2, 4, 5, 10}.

 An integer is an upper bound for {3, 9, 12} if and only if it is divisible by 3, 9, and 12.

 Which is 36. Hence, 36 is the least upper bound of {3, 9, 12}. 

 A positive integer is an upper bound for the set {1, 2, 4, 5, 10} if and only if it is divisible by 1, 

2, 4, 5, and 10. 

 Which is 20. Hence, 20 is the least upper bound of {1, 2, 4, 5, 10}. 
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 Lattices
 A partially ordered set in which every pair of elements has 

both a least upper bound and a greatest lower bound is 
called a lattice 

 EXAMPLE 18 Determine whether the posets represented 
by each of the Hasse diagrams in Figure are lattices. 

 Solution: The posets represented by the Hasse diagrams in (a) and (c) are both lattices because
in each poset every pair of elements has both a least upper bound and a greatest lower bound.

 The poset with the Hasse diagram shown in (b) is not a lattice, because the elements b and c 
have no least upper bound. 

 Each of the elements d, e, and f is an upper bound, but none of these three are lub. 
 EXAMPLE 19 Is the poset (Z+, |) a lattice?
 Solution: Let a and b be two positive integers. The least upper bound and greatest lower bound

of these two integers are the least common multiple and the greatest common divisor of these
integers, respectively. It follows that this poset is a lattice. 

 EXAMPLE 20 Determine whether the posets ({1,2,3,4,5},|) and ({1,2,4,8,16},|) are lattices.
 Solution: Because 2 and 3 have no upper bounds in ({1, 2, 3, 4, 5}, |), they                      

certainly do not have a least upper bound. Hence, the first poset is not a lattice.
 Every two elements of the second poset have both a least upper bound and                                          

a greatest lower bound. Hence, this second poset is a lattice. 
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 EXAMPLE 21 Determine whether (P (S), ⊆) is a lattice where S is a set.

 Solution: Let A and B be two subsets of S. The least upper bound and the greatest lower bound

of A and B are A ∪ B and A ∩ B, respectively. Hence, (P (S), ⊆) is a lattice. 

 A lattice can be described using two binary operations : join and meet.

 The join, or sum, is the least upper bound (LUB), sometimes called the supremum or Sup. 

 And the meet, or product, of two elements, is the greatest lower bound (GLB), sometimes 

called the infimum or Inf.

 EXAMPLE 22 let’s determine if the following 
posets are lattice using a Hasse diagram.

 Solution: The left figure is a lattice because each 

pair of elements has both a lub(join) and glb(meet).

 However, the right figure is not a lattice because 

each pair of elements are incomparable.

 The upper bound for b and c is {d,e,f,g}, we can’t 

identify which one of these vertices is the 

join(LUB) — therefore, this poset is not a lattice.
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 First 7 Hesse diagram are lattice while last 3 are not lattice.

 Several types of lattices :

 Complete Lattice – all subsets of a poset have a join and meet, such as the divisibility relation 
for the natural numbers or the power set with the subset relation.

 Bounded Lattice – if the lattice has a least and greatest element, denoted 0 and 1 respectively.

 Complemented Lattice – a bounded lattice in which every element is complemented. Namely, 
the complement of 1 is 0, and the complement of 0 is 1.

 Distributive Lattice – if for all elements in the poset the distributive property holds.

 Boolean Lattice – a complemented distributive lattice, such as the power set with the subset 
relation.

 The total order set is always Distributive Lattice .

❖ A lattice L said to be a distributive lattice if every element in L has “atmost one complement”
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 EXAMPLE 23 Which of the following is/are distributive lattice ?

 L1:𝑎 ∨ 𝑏 ∧ 𝑐 =(a ∨ b) ∧ (a ∨ c) ⇒ 𝑎 ∨ x= y ∧ y

 a ≠ y not a distributive lattice 

 L2:𝑎 ∨ 𝑏 ∧ 𝑐 =(a ∨ b) ∧ (a ∨ c) ⇒ 𝑎 ∨ x = b ∧ y

 a ≠ b not a distributive lattice 

 EXAMPLE 24 Which of the following is not a distributive lattice

A. (p(A); ⊆)  where A={a,b,c,d}

 Distributive law hold for any 3 subset hence its distributive. 

B. (D64;/) D64 = {1,2,4,8,16,32,64}

 It’s a total order set hence distributive lattice.

 EXAMPLE 25 In the lattice (D18;/) which of the following is true

A. The complement of 1 is 18. true

B. The complement of 2 is 9. true

C. The complement of 3 is 6. false

D. The complement of 6 doesn’t exist. true 

 It is a distributive lattice but not complemented lattice. 

a b c

x

y

x

y

a

b c

L1 L2
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 EXAMPLE 26 For the lattice shown below how many complement ‘e’ had ?

 A. 1 B.2 C.3 D.4

 It’s a complementary lattice but not a distributive lattice 

 Complement of d=b,e,c,f Complement of b=d,c,f

 Complement of c=d,b,e Complement of e=d,c,f

 Ans: 3

 EXAMPLE 27 For the lattice shown check distributive and complemented property.

 The lattice is neither distributive nor complemented. 

 Complement of a=g 

 Complement of b=f

 Complement of c=e 

 Complement of d=does not exist 

 Complement of e=f,c 

 Its not complemented ,also not distributive as for e we have 2 complement .

d

a

b c

e f

g

d

a

b c

e f

g
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2.12 Groups Theory
 Algebraic Structure (S,*): A nonempty set S is called a algebraic structure with respect to 

binary operation ‘*’.

 If (a*b) ∈ S , ∀a,b ∈ S then * is a closer operation on S.

 N={1,2,3,…..∞} 

 Z={Set of all integer }

 Q={Set of all rational numbers}

 R={Set of all real numbers}

 C={Set of all complex numbers}

 EXAMPLE 1

 (N ,+, ×) is an algebraic structure w.r.t ‘+, ×’.

 (N , − ) is not an algebraic structure w.r.t ‘ − ’.

 (N ,/) is not an algebraic structure w.r.t ‘/’.

 (Z ,+,×,-) is an algebraic structure w.r.t ‘+,×,-’.

 (Z ,/) is not an algebraic structure w.r.t ‘/’.
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 Semigroup: An algebraic structure (S,*) is a semigroup if ((a*b)*c)=(a*(b*c)) , ∀a,b,c ∈ S.

 i.e * is associative on S.

 EXAMPLE 2

 (N ,+) is a semigroup as ‘+’ is associative .

 (N , ×) is a semigroup as ‘×’ is associative .

 (N , −) is not a semigroup as ‘−’ is neither associative nor a closer operation.

 (N , /) is not a semigroup as ‘/’ is neither associative nor a closer operation.

 Monoid: A semigroup is called a monoid if identity element exist.

 Let e ∈ S s.t. (a*e)=a for ∀a ∈ S then e is identity element w.r.t *.

 EXAMPLE 3 

 (N,×) is a monoid as a × 1=a for ∀a ∈ N.

 (N,+) is not a monoid as a+0=a and 0 ∉ N.

 (Z,+) is a monoid as 0 ∈ Z.

 (Z,-) is not a monoid as ‘–’ is not associative ,hence not semigroup not a monoid.
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 Group: A monoid (S,*) is called a group if for each a ∈ S there exist an element b ∈ S s.t. 
(a*b)=(b*a)=e. b= inverse of a=a-1 .

 EXAMPLE 4 (Z ,+) is a group a+(-a)=0

 (N , ×) is not a group a×
1

𝑎
=1 , 

1

𝑎
 ∉ N

 Abelian group: A group (G,*) is said to be abelian if (a*b)=(b*a) , ∀a,b ∈ S.

 A group with commutative property.

 EXAMPLE 5 (Z ,+) is an abelian group

❖ Closer     =Algebraic structure 

❖ Closer , Associative    =Semigroup 

❖ Closer , Associative , identity   =Monoid 

❖ Closer , Associative , identity ,Inverse  =Group 

❖ Closer , Associative , identity ,Inverse, Commutative =Abelian group 

 EXAMPLE 6 Set of all non singular matrices of order (2×2) is a group w.r.t                             
matrix multiplication but not an abelian group because matrix multiplication                              
is not commutative .
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 EXAMPLE 7 Which of the following is not a semigroup ? 

 A) {1,3,5,……∞} w.r.t ‘×’ .It’s closer and associative hence semigroup . 

 B) {2,4,6,8…. ∞} w.r.t ‘+’.semigroup 

 C) {1,3,5,7,….∞} w.r.t ‘+’. It’s not closer as odd +odd =even hence not semigroup.

 D) {2,4,6,8….∞} w.r.t ‘×’. semigroup .

 EXAMPLE 8 The set A={0≤x ≤1 and x is a real number}w.r.t ‘×’ is ________ .

 A)A Semigroup but not a Monoid B)A Monoid but not a Group 

 C)A group   D) Not a Semigroup 

 Multiplication is closer ,Associative ,have identity 1 w.r.t ‘×’ .

 But no inverse as 
2

3
×

3

2
 =1 , 

3

2
 >1

 Hence a Monoid but not a Group 

 EXAMPLE 9 Let Z=Set of all int ,(a*b)=Min of {a,b}.Then (Z,*) is ______ .

 It is closer ,Associative but no identity .Min(a,e)=a ,e>a but e is not unique.

 Hence it’s a Semigroup .
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 Finite groups: If number of elements in a group is finite then it is called as finite group .

 Order of finite group =number of elements in the group .

 If a group has only one element then that element is identity element of group .

 S={0} is a group w.r.t ‘+’

 S={1} is a group w.r.t ‘×’

 S={1,-1} is a group w.r.t ‘×’

 EXAMPLE 10 The cube roots of unity {1,w,w2} is a group w.r.t. ‘×’

1 w w2

1 1 w w2

w w w2 1

w2 w2 1 w

 Inverse of 1=1,w= w2,w2 =w

 EXAMPLE 11 The forth roots of unity {1,-1,i,-i} is a group w.r.t. ‘×’

 i2=-1 ,Inverse of 1=1,-1=-1,-i=i,i=-i

1 -1 i -i

1 1 -1 i -i

-1 -1 1 -i i

i i -i -1 1

-i -i i 1 -1
 Addition module ⊕m ,Multiplication module ⊗m 

 Where m is a positive int ,If a,b are any two positive integers

 a⊕m b =a+b if a+b <m , =reminder 
𝑎+𝑏

𝑚
 if a+b≥m

 a⊗m b=a×b if a×b<m, =reminder
𝑎×𝑏

𝑚
 if a+b≥m
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 EXAMPLE 12 S={2,4,6,8} is a group ⊗ 10 2 4 6 8

2 4 8 2 6

4 8 6 4 2

6 2 4 6 8

8 6 2 8 4

 Closer , Associative , identity ,Inverse hence it’s a group

 Identity element =6

 Inverse of 2=8, 4=4,6=6,8=2 

 EXAMPLE 13 Which of the following is a group

 A){1,2,3,4,5} w.r.t ⊕6 B) {1,2,3,4,5} w.r.t⊗6

 C) {0,1,2,3,4,5} w.r.t⊗6 D) {1,2,3,4,5,6} w.r.t⊗7

 A,B are not closer hence not group.C have no inverse hence not group .D is a group

 Order of an element O(a) Let (G,*) be a group with identity element e ,for any element a∈G 

order of a O(a)=n ,where n is the smallest +ve integer s.t. an=e.

 EXAMPLE 14 G={1,-1} is a group w.r.t multiplication O(1)=1,O(-1)=2

 EXAMPLE 15 G={1,w,w2} is a group w.r.t multiplication 

 O(1)=1,O(w)=3, O(w2)=3

 EXAMPLE 16 G={1,-1,i,-i} is a group w.r.t multiplication 

 O(1)=1,O(-1)=2, O(i)=4, O(-i)=4
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 Subgroup: Let (G,*) be a group. A subset H ,H⊆G is called a subgroup of G if H is a group 

w.r.t. *.

 Let (G,*) be a group with identity element e ,G & {e} are called trivial subgroup of G.

 Proper Subgroup: Any other subgroup of G which is not a trivial called proper subgroup .

 If G is Abelian, then a subgroup of  G should be abelian. 

 EXAMPLE 17 G={1,-1,i,-i} is a group w.r.t multiplication ,H={1,-1} is a proper subgroup

 Lagrange theorem For any finite group say G, the order of subgroup H of group G divides 

the order of G. The order of the group represents the number of elements. 

 This theorem was given by Joseph-Louis Lagrange.   

 EXAMPLE 18 G={0,1,2,3,4,5} is a group w.r.t ⊕6 .Which of the fallowing subset of G are 

subgroup of G .

 A)H1={0,3} B) H2={0,5} C) H3={0,2,4} D) H4={0,2,3,4}

 A) Subgroup  B) not closer hence not subgroup 

 C) Subgroup  D) 4 is not divisible by 6. Hence not subgroup.

 EXAMPLE 19 G={1,2,3,4,5,6} is a group w.r.t ⊗7 Which of the fallowing are subgroup of G.

 A) H1={1,3}  B) H2={1,6}  C) H3={1,2,4} D) H4={1,3,5}

 A) Not closer hence not subgroup B) Subgroup 

 C) Subgroup   D) Not closer hence not subgroup 
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 EXAMPLE 20 G={1,3,5,7} is a group w.r.t ⊗8 Which of the fallowing are subgroup of G.

 A) H1={1,3}  B) H2={1,5}  C) H3={1,7} D) H4={1,3,5}

 A,B,C are subgroup while D is not a subgroup as 3 is not divisible by 4.

❖ Intersection of any two subgroup of a group is also a subgroup .

❖ Union of two subgroup H1 & H2 of a group G is also a subgroup of G iff H1⊂H2 or H2⊂H1. 

 EXAMPLE 21  Let (G,*) be a group of order p where p is a prime number ,how many proper 

subgroup are possible for G ? A)0 B)2 C)p-2 D)p

 Order(G)=p,Order(H)=1 or p 

 H={e} or{G} 

 Hence G has no proper subgroup . Ans (A)0

 Cyclic Group A group (G,*) is said to be cyclic if there exist an element a∈G s.t. every 

element of G can be written as an for some integer n. 

 The element a is called generating element or generator .

 Most of finite group are cyclic group .

 EXAMPLE 22 The set {1,-1} is a cyclic group w.r.t multiplication.

 Generator =-1,(-1)2=1

 EXAMPLE 23 The set {1,w,w2} is a cyclic group w.r.t multiplication.

 Generator =w,w2,(w)3=1, (w2)2=w, (w2)3=1
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 If (G,*) is a cyclic group with generator ‘a’ then 
 (1) a-1 is also a generator of G 
 (2) O(a)=O(G)
 EXAMPLE 24 G={0,1,2,3} is a cyclic group w.r.t ⊕4 

 12= 1 ⊕4 1=2 , 13= 1 ⊕4 1⊕4 1=3 , 14= 1⊕41⊕41⊕41=0
 32= 3 ⊕4 3=2 , 33= 3 ⊕4 3⊕4 3=1 , 34= 3 ⊕43⊕43⊕43=0
 Generator=1,3 
 EXAMPLE 25 G={1,2,3,4} is a cyclic group w.r.t ⊗5  .Generator=2,3 
 EXAMPLE 26 G={1,3,5,7} is the only group w.r.t ⊗8 not a cyclic group so we can’t find 

generator 
 Theorem – If a Group order is prime number, then it is cyclic group and every Cyclic group is 

abelian group.
 Number of generator in G=∅(n) [Euler function of n]
 Counts the number of positive integers less than n that are coprime to n.
 If the prime factorization of n is given by n =p1

e
1*...*pn

e
n, 

 Then φ(n) = n *(1 - 1/p1)* ... (1 - 1/pn).
 EXAMPLE 27 (G ,*) is a cyclic group of O(8) ,Number of generator in G=4
 8=23 , ∅(8)=8*(1-1/2)=4
 Coprime to 8={1,3,5,7}
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 EXAMPLE 28 if (G,*) is a cyclic group of order 100 then number of generator of G= ∅(100)

 100=22*52 , ∅(100)=100*(1-1/2)(1-1/5)=100*(1/2)*(4/5)=40

 EXAMPLE 29 (G,*) is given below 

 The generators are (a)a&b       (b)a&c           (c)a&d (d)b&d

* a b c d

a b d a c

b d c b a

c a b c d

d c a d b

 Identity element=c ,so c can’t be generator 

 a2=b, a3=d, a4=c , a is a generator .

 b2=c, b3=b, b is not a generator .

 d2=b, d3=a, d4=c , d is a generator

 Ans : a,d

 EXAMPLE 30 The incomplete composition table of finite group is given below.

 The last row of the table is 

 (a)a b c d  

 (b)c a d b

 (c)a b d c 

 (d)c a b d   

* a b c d

a b d a c

b d c b a

c a b c d

d
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❖ For cyclic group fallowing statements are true 

 Every cyclic group is abelian 

 Every group of prime order is cyclic & abelian

 Every subgroup of cyclic is cyclic but generator of subgroup may not be same as cyclic group.

❖ For group fallowing statements are true 

 In a group (G,*) with identity element e if a*a=a then a=e 

 a*a=a*e ⇒a=e 

 In a group(G,*) with identity element e if a-1=a , ∀a ∈G ,then G is abelian group.

 In a group (G,*) if (a*b)2=a2*b2 , ∀a,b ∈G then G is a abelian group
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