
Algorithms

Chapter 3: Decrease and Conquer 

GATE CS Lectures

 by Monalisa
M

on
ali

sa
CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS



 Section 5: Algorithms

 Searching, sorting, hashing. Asymptotic worst case time and space complexity. Algorithm design 
techniques : greedy, dynamic programming and divide‐and‐conquer . Graph traversals, minimum 
spanning trees, shortest paths

 Chapter 1:Algorithim Analysis:-Algorithm intro , Order of growth ,Asymptotic notation, Time 
complexity, space complexity, Analysis of Recursive & non recursive program, Master theorem ]

 Chapter 2:Brute Force:-Sequential search, Selection Sort and Bubble Sort , Radix sort, Depth first Search 
and Breadth First Search.

 Chapter 3: Decrease and Conquer :- Insertion Sort, Topological sort,Binary Search .

 Chapter 4: Divide and conquer:-Min max problem , matrix multiplication ,Merge sort ,Quick Sort , Binary 
Tree Traversals and Related Properties .

 Chapter 5: Transform and conquer:- Heaps and Heap sort, Balanced Search Trees.

 Chapter 6: Greedy Method:-knapsack problem , Job Assignment problem, Optimal merge, Hoffman 
Coding, minimum spanning trees, Dijkstra’s Algorithm.

 Chapter 7: Dynamic Programming:-The Bellman-Ford algorithm ,Warshall’s and Floyd’s Algorithm ,Rod 
cutting, Matrix-chain multiplication ,Longest common subsequence ,Optimal binary search trees

 Chapter 8: Hashing.

 Reference : Introduction to Algorithms by Thomas H. Cormen

 Introduction to the Design and Analysis of Algorithms, by Anany Levitin

 My Note

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS



 Chapter 3: 

 Decrease and Conquer :- 

 Insertion Sort, 

 Topological sort, 

 Binary Search

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS



Decrease-and-Conquer
 The decrease-and-conquer technique is based on exploiting the 

relationship between a solution to a given instance of a problem and a 
solution to its smaller instance.

 Once such a relationship is established, it can be exploited either top 
down or bottom up. 

 The bottom-up variation is usually implemented iteratively, starting 
with a solution to the smallest instance of the problem; it is called 
sometimes the incremental approach.

 There are three major variations of decrease-and-conquer:
 decrease by a constant
 decrease by a constant factor
 variable size decrease 
 In the decrease-by-a-constant variation, the size of an instance is 

reduced by the same constant on each iteration of the algorithm.
 Typically, this constant is equal to one , although other constant size 

reductions do happen occasionally. 
 FIGURE : Decrease-(by one)-and-conquer technique

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS



 The decrease-by-a-constant-factor technique suggests reducing a 
problem instance by the same constant factor on each iteration of the 
algorithm. In most applications, this constant factor is equal to two. 

 FIGURE 4.2 Decrease-(by half)-and-conquer technique

 The variable-size-decrease variety of decrease-and-conquer, the
size-reduction pattern varies from one iteration of an algorithm to 
another. 

 Euclid’s algorithm for computing the greatest common divisor 
provides a good example. gcd(m, n) = gcd(n, m mod n) 

 Insertion Sort
 An application of the decrease-by-one technique to sorting an array. 
 We assume that the smaller problem of sorting the array A[0..n - 2] 

has already been solved to give us a sorted array of size n – 1. 
 All we need is to find an appropriate position for A[n - 1] among the 

sorted elements and insert it there.
 This is usually done by scanning the sorted subarray from right to left 

until the first element smaller than or equal to A[n - 1] is encountered 
to insert A[n - 1] right after that element. 

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS



 The algorithm sorts the input numbers in place: it rearranges the numbers within the array A, 
with at most a constant number of them stored outside the array at any time.

 ALGORITHM InsertionSort(A[0..n - 1])
 //Input: An array A[0..n - 1] of n orderable elements
 //Output: Array A[0..n - 1] sorted in nondecreasing order
 for i ← 1 to n - 1 do
    v ← A[i]
    j ← i – 1
   while j ≥ 0 and A[j] > v do
  A[j + 1] ← A[j]
  j ← j – 1
  A[j + 1] ← v 

0 1 2 3 4 5 6

8 4 6 9 2 3 1

4 8 6 9 2 3 1

4 6 8 9 2 3 1

4 6 8 9 2 3 1

2 4 6 8 9 3 1

2 3 4 6 8 9 1

1 2 3 4 6 8 9

 The basic operation of the algorithm is the key comparison A[j]> v. 
 In the worst case, A[j] > v is executed the largest number of times, i.e., for every j = i - 1,... , 0. 
 Cworst(n) =σ𝑖=1

𝑛−1∗ σ𝑗=0
i−1 1 

 = σ𝑖=1
𝑛−1 [(i − 1) − 0 + 1] = σ𝑖=1

𝑛−1 i =
𝑛 𝑛−1

2
∈ Θ(n2)

 In the best case, the comparison A[j] > v is executed only once on every                         
iteration of the outer loop.

 For sorted arrays, the number of key comparisons is
 Cbest(n) =σ𝑖=1

𝑛−11=n-1 ∈ Θ(n)

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS



Topological Sort
 A directed graph, or digraph , is a graph with directions specified for all its edges. 
 Four types of edges possible in a DFS forest of a directed graph: tree edges , back edges from 

vertices to their ancestors, forward edges from vertices to their descendants in the tree other 
than their children, and cross edges , which are none of the back edges or forward edges. 

 If a DFS forest of a digraph has no back edges, the digraph is a DAG, an acronym for directed 
acyclic graph .

 A topological sort of a DAG G=(V,E) is a linear ordering of all its vertices such that for every 
directed edge (u,v) then u appears before v in the ordering. 

 If the graph contains a cycle , then no linear ordering is possible.
 We can view a topological sort of a graph as an ordering of its vertices along a horizontal line 

so that all directed edges go from left to right. 
 TOPOLOGICAL-SORT(G)
 1. call DFS(G) to compute finishing times v.f for each vertex .
 2. as each vertex is finished, insert it onto the front of a linked list.
 3. return the linked list of vertices 
 We can perform a topological sort in time Θ (V+E), Since depth-first                                 

search takes Θ (V+ E) time and it takes O(1) time to insert each of                                          
the |V| vertices onto the front of the linked list.

 The second algorithm is based on a direct implementation of the                                   
decrease-(by one)-and-conquer technique:

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS



 DFS Sequence 1: A1/14 , B2/11 , D3/10 , E4/7 , G5/6 , F8/9 , C12/13
 Topological sort Sequence 1: A , C , B , D , F , E , G
 DFS Sequence 2: A1/14 , B2/11 , D3/10 , F4/7 , G5/6 , E8/9 , C12/13
 Topological sort Sequence 2: A , C , B , D , E , F , G
 DFS Sequence 3: A1/14 , C2/5 , G3/4 , B6/13 , D7/12 , E8/9 , F10/11
 Topological sort Sequence 3: A , B , D , F , E , C , G
 DFS Sequence 4: A1/14 , C2/5 , G3/4 , B6/13 , D7/12 , F8/9 , E10/11
 Topological sort Sequence 4: A , B , D , E , F , C , G
 Number of Different Topological ordering =4

 Repeatedly, identify in a remaining digraph a source,which is a vertex with no 
incoming edges, and delete it along with all the edges outgoing from it. 

 (If there are several sources, break the tie arbitrarily.) 
 The order in which the vertices are deleted yields a solution to the topological 

sorting problem .
 Note that the solution obtained by the source-removal algorithm is different 

from the one obtained by the DFS-based algorithm. 
 Both of them are correct, of course; the topological sorting problem may have 

several alternative solutions. 
 Example 1:

A

B C

D

E F

G

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS



 2nd way : source-removal algorithm

 Find indegree of all vertices and write in increasing order .

 (A,0) , (B,1) , (C,1) , (D,1) , (E,1) , (F,1) , (G,3)

 Remove A with its outgoing edge and insert in queue

 Indegree: (B,0) , (C,0) , (D,1) , (E,1) , (F,1) , (G,3) 

 Remove B or C..let B with its outgoing edge and insert in Queue . 

 Indegree:  (C,0) , (D,0) , (E,1) , (F,1) , (G,3) 

 Remove C or D..let C with its outgoing edge and insert in Queue . 

 Indegree  (D,0) , (E,1) , (F,1) , (G,2)

 Remove D with its outgoing edge and insert in Queue .

 Indegree (E,0) , (F,0) , (G,2) 

 Remove E or F..let E with its outgoing edge and insert in Queue .

 Indegree: (F,0),(G,1) ,Remove F with its outgoing edge and insert in Queue .

 Indegree: (G,0),Remove G and insert in Queue .

 TS 1:A,B,C,D,E,F,G TS 2:A,B,C,D,F,E,G TS 3:A,B,D,E,C,F,G

 TS 4:A,B,D,E,F,C,G TS 5:A,B,D,F,E,C,G TS 6:A,B,D,F,C,E,G

 TS 7:A,B,D,C,F,E,G TS 8:A,B,D,C,E,F,G TS 9:A,C,B,D,E,F,G

 TS 10:A,C,B,D,F,E,G Number of Different Topological ordering =10

A

B C

D

E F

G

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS



 A_ _ _ _ _ G

 B come before D , D come before E or F.

 C can come between any place of B,D,E,F.


5!

4!

2!
×1!

 =10

A

B C

D

E F

G

A

B C

C D

D

E F

F

G

E

G

E F C

F C

C

G

F

G

E C

C

G

E

G

E F

F

G

E

G

B

D

E F

F

G

E

G
M

on
ali

sa
CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS



 Example 2:

 DFS1:B1/12,A2/9,C3/8,E4/5,F6/7,D10/11 , TS1: B ,D ,A, C, F, E

 DFS2:B1/12,A2/9,C3/8,F4/5,E6/7,D10/11 , TS2: B ,D ,A, C, E, F

 DFS3:B1/12,D2/9,C3/8,F4/5,E6/7,A10/11 , TS3: B ,A ,D, C, E, F

 DFS4:B1/12,D2/9,C3/8,E4/5,F6/7,A10/11 , TS4: B ,A ,D, C, F, E

 Number of Different Topological ordering =4

 2nd way : source-removal algorithm

 Indegree:(B,0),(A,1),(D,1),(E,1),(F,1),(C,2)

 Remove B with its outgoing edge and insert in Queue .

 Indegree:(A,0),(D,0),(E,1),(F,1),(C,2), Remove A or D let A . 

 Indegree:(D,0),(E,1),(F,1),(C,1), Remove D .

 Indegree:(C,0),(E,1),(F,1), Remove C .

 Indegree:(E,0),(F,0), Remove E or F let E.

 Remove F and insert in Queue .

 Topological sort 1:B,A,D,C,E,F ,Topological sort 2:B,A,D,C,F,E

 Topological sort 3:B,D,A,C,E,F, Topological sort 4:B,D,A,C,F,E

A

B

C

D

E

F

B

A D

AD

C

E F

F E

C

E F

F E

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS



Decrease-by-a-Constant-Factor Algorithms
 Decrease-by-a-constant-factor algorithms usually run in logarithmic time.
➢ Binary Search
 Binary search is a algorithm for searching in a sorted array. 
 It works by comparing a search key K with the array’s middle element A[m]. 
 If they match, the algorithm stops; otherwise, the same operation is repeated recursively

for the first half of the array if K < A[m], and for the second half if K > A[m]: 

 ALGORITHM BinarySearch(A[0..n - 1], K)
 //Input: An array A[0..n - 1] sorted in ascending order and a search key K.
 //Output: An index of the array’s element that is equal to K or -1 if there is no such element
 l ← 0; r ← n – 1
  while l ≤ r do
       m ← Τ𝑙 + 𝑟 2
       if K = A[m] return m
       else if K < A[m] r ← m – 1
       else l ← m + 1
 return -1 
 The worst-case inputs include all arrays that do not contain a given                                  

search key, as well as some successful searches. 

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS



 Since after one comparison the algorithm faces the same situation but for an array half the size 

, we get the following recurrence relation for Cworst(n): 

 Cworst(n) = Cworst⌊n ∕ 2⌋+ 1 for n > 1, Cworst(1) = 1. 

 T(n)=T(n/2)+1

 a=1,b=2,f(n)=1

 nlogba= nlog21 =n0=1

 Case 2 : f(n)=Θ(nlogba ) then T(n) is Θ(nlogba *log n)

 T(n) is Θ(log n)

 Cworst(n) = log2 n + 1 . CBest (n) =1

 As an example, let us apply binary search to searching for K = 70 in the array 

index 0 1 2 3 4 5 6 7 8 9 10 11 12

value 3 14 27 31 39 42 55 70 74 81 85 93 98

1 l m r

2 l m r

3 l,m r

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS



 Decrease-and-Conquer Recurrence 

 Master Theorem for Decrease & conquer Recurrence 

 T(n)=aT(n-b)+f(n) [a>0 ,b>0 ,T(d)=c Initial condition ,n>d]

 Case 1:if a<1,  T(n) is O(f(n))

 Case 2:if a=1,  T(n) is O(n*f(n))

 Case 3:if a>1,  T(n) is O(an/b*f(n))

 Ex 1: T(n)=T(n-1)+1 

 Ex 2: T(n)=T(n-1)+n 

 Ex 3: T(n)=T(n-1)+log n 

 Ex 4: T(n)=n*T(n-1)+1

 Ex 5: T(n)=2T(n-1)+1 

 Ex 6: T(n)=2T(n-1)+n

 Ex 7: T(n)=1/2T(n-1)+log n

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS


	Slide 1
	Slide 2
	Slide 3
	Slide 4: Decrease-and-Conquer
	Slide 5
	Slide 6
	Slide 7: Topological Sort
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Decrease-by-a-Constant-Factor Algorithms
	Slide 13
	Slide 14

