Algorithms

Chapter 3: Decrease and Conquer

GATE OS Lectures
by Monalisa

Section 5; Aigori[hms https//monalisacs.con?\

Searching, sorting, hashing. Asymptotic worst case time and space complexity. Algorithm design
techniques : greedy, dynamic programming and divide-and-conquer . Graph traversals, minimum
spanning trees, shortest paths

Chapter 1:Algorithim Analysis:-Algorithm intro , Order of growth ,Asymptotic notation, Time
complexity, space complexity, Analysis of Recursive & non recursive program, Master theorem]

Chapter 2:Brute Force:-Sequential search, Selection Sort and Bubble Sort , Radix sort, Depth first Search
and Breadth First Search.

Chapter 3: Decrease and Conqguer :- Insertion Sort, Topological sort,Binary Search .

Chapter 4: Divide and conquer:-Min max problem , matrix multiplication ,Merge sort ,Quick Sort , Binary
Tree Traversals and Related Properties .

Chapter 5: Transform and conquer:- Heaps and Heap sort, Balanced Search Trees.

Chapter 6: Greedy Method:-knapsack problem , Job Assignment problem, Optimal merge, Hoffman
Coding, minimum spanning trees, Dijkstra’s Algorithm.

Chapter 7: Dynamic Programming:-The Bellman-Ford algorithm ,Warshall’s and Floyd’s Algorithm ,Rod
cutting, Matrix-chain multiplication ,Longest common subsequence ,Optimal binary search trees

Chapter 8: Hashing.

Reference : Introduction to Algorithms by Thomas H. Cormen
Introduction to the Design and Analysis of Algorithms, by Anany Levitin
My Note

https://www.youtube.com/@ Monalisacy

https://monalisacs.con?\

= Chapter 3:
Decrease and Conquer :-
Insertion Sort,
Topological sort,
Binary Search

\ https://www.youtube.com/@ Monalisacy

The decrease-and-conquer technique is based on exploiting the

relationship between a solution to a given instance of a problem and a

solution to its smaller instance.

Once such a relationship is established, it can be exploited either top

down or bottom up.

The bottom-up variation is usually implemented iteratively, starting
with a solution to the smallest instance of the problem; it is called
sometimes the incremental approach.

There are three major variations of decrease-and-conquer:

decrease by a constant

decrease by a constant factor

variable size decrease

In the decrease-by-a-constant variation, the size of an instance is
reduced by the same constant on each iteration of the algorithm.
Typically, this constant is equal to one , although other constant size
reductions do happen occasionally.

FIGURE : Decrease-(by one)-and-conquer technique

https://monalisacs.con?\

problem of size n |

subproblem
of size n-1

solution to
the subproblem

solution to
the original problem

https://www.youtube.com/@ Monalisacy

4 The decrease-by-a-constant-factor technique suggests reducing a
problem instance by the same constant factor on each iteration of the
algorithm. In most applications, this constant factor is equal to two.
FIGURE 4.2 Decrease-(by half)-and-conquer technigue

The variable-size-decrease variety of decrease-and-conquer, the
size-reduction pattern varies from one iteration of an algorithm to
another.

Euclid’s algorithm for computing the greatest common. divisor
provides a good example. gcd(m, n) = gcd(n, m mod-n)

Insertion Sort

An application of the decrease-by-one technigue to sorting an array.
We assume that the smaller problem of sorting the array A[O..n - 2]
has already been solved to give us a sorted-.array of size n — 1.

All we need is to find an appropriate position for A[n - 1] among the
sorted elements and insert it there.

This is usually done by scanning the sorted subarray from right to left
until the first element smaller than or equal to A[n - 1] is encountered
to insert A[n - 1] right after that element.

{ |

A[0]<---<A[jl<A[j+11<---<Ali = 1] | Ali]--- A[n—1]

\ smaller than or equal to A[i] greater than A[7]

ps:/Imonalls om/

of size n

problem

subproblem
of size n/2

v

solution to
the subproblem

h

solution to
the original problem

https://www.youtube.com/@ Monalisacy

4 The algorithm sorts the input numbers in place: it rearranges the numbers within"tre arras AR\
with at most a constant number of them stored outside the array at any time.

e ALGORITHM InsertionSort(A[0..n - 1]) o 1 2 3 4 5 6
e /lInput: An array A[0..n - 1] of n orderable elements 8 |4 |6 |9 |2 |3 |1

e //Output: Array A[0..n - 1] sorted in nondecreasing order 4 s 16 |9 2 13 |1

e fori—1ton-1do

o v A[i] 4 |6 |8 19 |2 |3 |1

o je—i-1 4 16 [8 |9 |2 |3 |1

e whilej>0andA[j] >vdo 2 |4 |6 [8 |9 |3 |1
. Al + 1] < A[l] 2 |3 |4 |6 |8 |9 |1

A Rl 1 (2 |3 |4 |6 [8 |9

o Afjt+1]«vV

* The basic operation of the algorithm is the key comparison A[j]> v.

* In the worst case Alj > v is executed the largest number of times, i.e., forevery j=i-1,..., 0.

¢ worst(n) Z * Z] 0 _n(n-1)
o =M - 1) 0+1]1=X5i=——€06M)
. In the best case, the comparison A[j] > v is executed only once on every

iteration of the outer loop.
For sorted arrays, the number of key comparisons is

K Cbest(n) Z 1 n-1€ ®(n) https://www.youtube.com/@Monalisacy

I O O I Oq]l Cai SO rt hitps:/imonalisacs comM
P

A directed graph, or digraph, |s a graph with directions specified for all its edges.

Four types of edges possible in a DFS forest of a directed graph: tree edges , back edges from
vertices to their ancestors, forward edges from vertices to their descendants in the tree other
than their children, and cross edges , which are none of the back edges or forward edges.

If a DFS forest of a digraph has no back edges, the digraph is a DAG, an acronym for directed
acyclic graph.

A topological sort of a DAG G=(V,E) is a linear ordering of all its vertices such that for every
directed edge (u,v) then u appears before v in the ordering.

If the graph contains a cycle , then no linear ordering is possible.

We can view a topological sort of a graph as.an ordering of its vertices along a horizontal line
so that all directed edges go from left to right.

TOPOLOGICAL-SORT(G)

1. call DFS(G) to compute finishing times v.f for each vertex .

2. as each vertex is finished, insert it\ento the front of a linked list.

3. return the linked list of vertices

We can perform a topological sort in time ® (V+E), Since depth-first

search takes ® (V+ E) time and it takes O(1) time to insert each of

the [V| vertices onto the front of the linked list.

The second algorithm is based on a direct implementation of the

decrease-(by one)-and-conquer technique:

https://www.youtube.com/@MonaIisaCy

/= Repeatedly, identify in a remaining digraph a source,which is a vertex with no ““ps:”sacs'”@\
incoming edges, and delete it along with all the edges outgoing from it.

(If there are several sources, break the tie arbitrarily.)

The order in which the vertices are deleted yields a solution to the topological

sorting problem . _ _ o
Note that the solution obtained by the source-removal algorithm is different

from the one obtained by the DFS-based algorithm.
Both of them are correct, of course; the topological sorting problem may have
several alternative solutions.
Example 1.

DFS Sequence 1: A4, By, Do, Egyg G5/6 ' Fséa » Cians
Topological sort Sequence 1: A, C , B;'Dr,

DFS Sequence 2: Ay , By, Dy s I:4/7 ’ GS/6 E%g » Cians
Topological sort Sequence 2: A C.B,D,

DFS Sequence 3: Ay , C2/§ 4 » Bena s D7/12 ég » From
Topological sort Sequence 3: A, B D, F E,

DFS Sequence 4: Ay, , Cys G3/4 ’ BG/13 D7/12 F8/9 E10m1
Topological sort Sequence 4: A, B, D, E F, C G

Number of Different Topologlcal orderlng =4
& https://www.youtube.com/@MonaIisaCy

4 20 way : source-removal algorithm

https://

honalisg

1cs.com7\

Find indegree of all vertices and write in increasing order .
(A0),(B1),(C1),(D.1),(EIL),(FI).(G3)

Remove A with its outgoing edge and insert in queue
Indegree: (B,0), (C,0), (D,1), (E,1), (F1), (G,3)
Remove B or C..let B with its outgoing edge and insert in.Queue .
Indegree: (C,0), (D,0), (E,1), (F1), (G,3)

Remove C or D..let C with its outgoing edge and insert in Queue .

Remove D with its outgoing edge and insert.in.Queue .

Indegree (E,0) , (F,0), (G,2)

Remove E or F..let E with its outgoing edge and insert in Queue .

Indegree: (F,0),(G,1) ,Remove F with its outgoing edge and insert in Queue .
Indegree: (G,0),Remove G and insert in Queue .

TS 1:AB,C,D,EF.G TS 2:A,B,C,D,FE,G TS3:AB,D,E,CFG
TS 4:AB,D,E,FC,G TS5:AB,D,FE,C,G TS6:A,B,D,FCEG
TS7:AB,D,C,FE,G TS8:AB,D,C,EF,G TS 9:A,C,B,D,EF,G

/. [[] [] [] [[] [] [] { { { { { { { {

Indegree (D,0), (E,1), (F1), (G,2) @

(D)

(A)

TS 10:A,C,B,D,F.E,G Number of Different Topological ordering :LQS:,,WW_youtube_Com,@Mona“saCy

G
» B come before D, D come before E or F.

» C can come between any place of B,D,E,F.

A A

https://www.youtube.com/@ Monalisacy

™~

» Example 2:

* DFSL:By/12A29.Ca8:Eas:Fer7:D1ons » TSL B DA C R E

* DFS2:By/12A29.Cai8:Fass:Eer7:Daons » T52: B DA CE, F B

* DFS3:By/12:D29.Cai8:F 5. Eer7:Aroms » T93: B A D, C, EF —

* DFS4:By/12,Dy9.C38.E 5. FerArons » TS4: B AD, €, HE A D

e Number of Different Topological ordering =4 ! |

» 2" way : source-removal algorithm D A

* Indegree:(B,0),(A,1),(D,1),(E,1),(F1),(C,2) | l

» Remove B with its outgoing edge and insert in Queue . C C
 Indegree:(A,0),(D,0),(E,1),(F,1),(C,2), Remove Aor D letA. N ¥\
» Indegree:(D,0),(E,1),(F.1),(C,1), Remove D . E F E F
» Indegree:(C,0),(E,1),(F1), Remove C . ; Vo |
» Indegree:(E,0),(F,0), Remove E or F let E. F E F E
» Remove F and insert in Queue .

e Topological sort 1:B,A,D,C,E,F ,Topological sort 2:B,A,D,C,FE

e Topological sort 3:B,D,A,C,E,F, Topological sort 4:B8,D,A,C,F.E ntps: i youtube.com/@MonalisaCS

/" Decrease-by-a-Constant-Factor Algorithms

Decrease-by-a-constant-factor algorithms usually run in logarithmic time.

Binary Search

Binary search is a algorithm for searching in a sorted array.

It works by comparing a search key K with the array’s middle element A[m].

If they match, the algorithm stops; otherwise, the same operation is repeated recursively
for the first half of the array if K < A[m], and for the'second half if K > A[m]:

e o o \ o

https://monalisacs.con?\

e ALGORITHM BinarySearch(A[0..n - 1], K)

e //Input: An array A[0..n - 1] sorted in ascending-order and a search key K.

e //Output: An index of the array’s element that.is equal to K or -1 if there is no such element
o |—0;r—n-1 K

e whilel<rdo ¢

. m<—[(l+71)/2] A[0]...A[m —1] A[m] A[m+1]...A[n —1].
@ If K — A[m] rEtu rnm k searchvhere if L search here if J
o else if K<A[m]r—m-1 K<Alm] K>Am]

. elsel —m+1

e return-1

» The worst-case inputs include all arrays that do not contain a given

search key, as well as some successful searches.

K https://www.youtube,com/@MonalisaCy

4 Since after one comparison the algorithm faces the same situation but for an array'Half tfi&sze\

, we get the following recurrence relation for C,,.(n):

Cuorst(N) = Cyoreln/ 2]+ 1forn>1, C4(1) = 1.

T(nN)=T(n/2)+1

a=1,b=2,f(n)=1

nlo9pa= nlog2l =n0=1

Case 2 : f(n)=O(n'o%2) then T(n) is B(n'°%2 *|og n)

T(n) is ©(log n)

Cworst(n) = Iogz n+1. CBest (n) =1

As an example, let us apply binary search to.searching for K = 70 in the array
index 01 2 3 4 5 6/ 8 9 10 11 12

value [3 (14 |27 [31 |39 [420455 |70 | 74|81 |85 |93 |98

1 I m r
2 I m r
3 Im r

& https://www.youtube.com/@MonaIisaCy

4 Decrease-and-Conquer Recurrence hitps:/imonalisacs. comm

e Master Theorem for Decrease & conquer Recurrence

e T(n)=aT(n-b)+f(n) [a>0 ,b>0,T(d)=c Initial condition ,n>d]
e Case l:ifa<li, T(n) is O(f(n))

e Case 2:ifa=1, T(n) is O(n*f(n))

o Case 3:if a>1, T(n) is O(a™*f(n))

e Ex1: T(n)=T(n-1)+1

e Ex2: T(n)=T(n-1)+n

e Ex3: T(n)=T(n-1)+logn

e Ex4:T(n)=n*T(n-1)+1

e Ex5:T(n)=2T(n-1)+1

e EX6:T(n)=2T(n-1)+n

e EXx7:T(n)=1/2T(n-1)+logn

K https://www.youtube.com/@ MonalisaCy

	Slide 1
	Slide 2
	Slide 3
	Slide 4: Decrease-and-Conquer
	Slide 5
	Slide 6
	Slide 7: Topological Sort
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Decrease-by-a-Constant-Factor Algorithms
	Slide 13
	Slide 14

