
Algorithms

Chapter 3: Decrease and Conquer

GATE CS Lectures

 by Monalisa
M

on
ali

sa
CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Section 5: Algorithms

 Searching, sorting, hashing. Asymptotic worst case time and space complexity. Algorithm design
techniques : greedy, dynamic programming and divide‐and‐conquer . Graph traversals, minimum
spanning trees, shortest paths

 Chapter 1:Algorithim Analysis:-Algorithm intro , Order of growth ,Asymptotic notation, Time
complexity, space complexity, Analysis of Recursive & non recursive program, Master theorem]

 Chapter 2:Brute Force:-Sequential search, Selection Sort and Bubble Sort , Radix sort, Depth first Search
and Breadth First Search.

 Chapter 3: Decrease and Conquer :- Insertion Sort, Topological sort,Binary Search .

 Chapter 4: Divide and conquer:-Min max problem , matrix multiplication ,Merge sort ,Quick Sort , Binary
Tree Traversals and Related Properties .

 Chapter 5: Transform and conquer:- Heaps and Heap sort, Balanced Search Trees.

 Chapter 6: Greedy Method:-knapsack problem , Job Assignment problem, Optimal merge, Hoffman
Coding, minimum spanning trees, Dijkstra’s Algorithm.

 Chapter 7: Dynamic Programming:-The Bellman-Ford algorithm ,Warshall’s and Floyd’s Algorithm ,Rod
cutting, Matrix-chain multiplication ,Longest common subsequence ,Optimal binary search trees

 Chapter 8: Hashing.

 Reference : Introduction to Algorithms by Thomas H. Cormen

 Introduction to the Design and Analysis of Algorithms, by Anany Levitin

 My Note

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Chapter 3:

 Decrease and Conquer :-

 Insertion Sort,

 Topological sort,

 Binary Search

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Decrease-and-Conquer
 The decrease-and-conquer technique is based on exploiting the

relationship between a solution to a given instance of a problem and a
solution to its smaller instance.

 Once such a relationship is established, it can be exploited either top
down or bottom up.

 The bottom-up variation is usually implemented iteratively, starting
with a solution to the smallest instance of the problem; it is called
sometimes the incremental approach.

 There are three major variations of decrease-and-conquer:
 decrease by a constant
 decrease by a constant factor
 variable size decrease
 In the decrease-by-a-constant variation, the size of an instance is

reduced by the same constant on each iteration of the algorithm.
 Typically, this constant is equal to one , although other constant size

reductions do happen occasionally.
 FIGURE : Decrease-(by one)-and-conquer technique

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 The decrease-by-a-constant-factor technique suggests reducing a
problem instance by the same constant factor on each iteration of the
algorithm. In most applications, this constant factor is equal to two.

 FIGURE 4.2 Decrease-(by half)-and-conquer technique

 The variable-size-decrease variety of decrease-and-conquer, the
size-reduction pattern varies from one iteration of an algorithm to
another.

 Euclid’s algorithm for computing the greatest common divisor
provides a good example. gcd(m, n) = gcd(n, m mod n)

 Insertion Sort
 An application of the decrease-by-one technique to sorting an array.
 We assume that the smaller problem of sorting the array A[0..n - 2]

has already been solved to give us a sorted array of size n – 1.
 All we need is to find an appropriate position for A[n - 1] among the

sorted elements and insert it there.
 This is usually done by scanning the sorted subarray from right to left

until the first element smaller than or equal to A[n - 1] is encountered
to insert A[n - 1] right after that element.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 The algorithm sorts the input numbers in place: it rearranges the numbers within the array A,
with at most a constant number of them stored outside the array at any time.

 ALGORITHM InsertionSort(A[0..n - 1])
 //Input: An array A[0..n - 1] of n orderable elements
 //Output: Array A[0..n - 1] sorted in nondecreasing order
 for i ← 1 to n - 1 do
 v ← A[i]
 j ← i – 1
 while j ≥ 0 and A[j] > v do
 A[j + 1] ← A[j]
 j ← j – 1
 A[j + 1] ← v

0 1 2 3 4 5 6

8 4 6 9 2 3 1

4 8 6 9 2 3 1

4 6 8 9 2 3 1

4 6 8 9 2 3 1

2 4 6 8 9 3 1

2 3 4 6 8 9 1

1 2 3 4 6 8 9

 The basic operation of the algorithm is the key comparison A[j]> v.
 In the worst case, A[j] > v is executed the largest number of times, i.e., for every j = i - 1,... , 0.
 Cworst(n) =σ𝑖=1

𝑛−1∗ σ𝑗=0
i−1 1

 = σ𝑖=1
𝑛−1 [(i − 1) − 0 + 1] = σ𝑖=1

𝑛−1 i =
𝑛 𝑛−1

2
∈ Θ(n2)

 In the best case, the comparison A[j] > v is executed only once on every
iteration of the outer loop.

 For sorted arrays, the number of key comparisons is
 Cbest(n) =σ𝑖=1

𝑛−11=n-1 ∈ Θ(n)

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Topological Sort
 A directed graph, or digraph , is a graph with directions specified for all its edges.
 Four types of edges possible in a DFS forest of a directed graph: tree edges , back edges from

vertices to their ancestors, forward edges from vertices to their descendants in the tree other
than their children, and cross edges , which are none of the back edges or forward edges.

 If a DFS forest of a digraph has no back edges, the digraph is a DAG, an acronym for directed
acyclic graph .

 A topological sort of a DAG G=(V,E) is a linear ordering of all its vertices such that for every
directed edge (u,v) then u appears before v in the ordering.

 If the graph contains a cycle , then no linear ordering is possible.
 We can view a topological sort of a graph as an ordering of its vertices along a horizontal line

so that all directed edges go from left to right.
 TOPOLOGICAL-SORT(G)
 1. call DFS(G) to compute finishing times v.f for each vertex .
 2. as each vertex is finished, insert it onto the front of a linked list.
 3. return the linked list of vertices
 We can perform a topological sort in time Θ (V+E), Since depth-first

search takes Θ (V+ E) time and it takes O(1) time to insert each of
the |V| vertices onto the front of the linked list.

 The second algorithm is based on a direct implementation of the
decrease-(by one)-and-conquer technique:

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 DFS Sequence 1: A1/14 , B2/11 , D3/10 , E4/7 , G5/6 , F8/9 , C12/13
 Topological sort Sequence 1: A , C , B , D , F , E , G
 DFS Sequence 2: A1/14 , B2/11 , D3/10 , F4/7 , G5/6 , E8/9 , C12/13
 Topological sort Sequence 2: A , C , B , D , E , F , G
 DFS Sequence 3: A1/14 , C2/5 , G3/4 , B6/13 , D7/12 , E8/9 , F10/11
 Topological sort Sequence 3: A , B , D , F , E , C , G
 DFS Sequence 4: A1/14 , C2/5 , G3/4 , B6/13 , D7/12 , F8/9 , E10/11
 Topological sort Sequence 4: A , B , D , E , F , C , G
 Number of Different Topological ordering =4

 Repeatedly, identify in a remaining digraph a source,which is a vertex with no
incoming edges, and delete it along with all the edges outgoing from it.

 (If there are several sources, break the tie arbitrarily.)
 The order in which the vertices are deleted yields a solution to the topological

sorting problem .
 Note that the solution obtained by the source-removal algorithm is different

from the one obtained by the DFS-based algorithm.
 Both of them are correct, of course; the topological sorting problem may have

several alternative solutions.
 Example 1:

A

B C

D

E F

G

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 2nd way : source-removal algorithm

 Find indegree of all vertices and write in increasing order .

 (A,0) , (B,1) , (C,1) , (D,1) , (E,1) , (F,1) , (G,3)

 Remove A with its outgoing edge and insert in queue

 Indegree: (B,0) , (C,0) , (D,1) , (E,1) , (F,1) , (G,3)

 Remove B or C..let B with its outgoing edge and insert in Queue .

 Indegree: (C,0) , (D,0) , (E,1) , (F,1) , (G,3)

 Remove C or D..let C with its outgoing edge and insert in Queue .

 Indegree (D,0) , (E,1) , (F,1) , (G,2)

 Remove D with its outgoing edge and insert in Queue .

 Indegree (E,0) , (F,0) , (G,2)

 Remove E or F..let E with its outgoing edge and insert in Queue .

 Indegree: (F,0),(G,1) ,Remove F with its outgoing edge and insert in Queue .

 Indegree: (G,0),Remove G and insert in Queue .

 TS 1:A,B,C,D,E,F,G TS 2:A,B,C,D,F,E,G TS 3:A,B,D,E,C,F,G

 TS 4:A,B,D,E,F,C,G TS 5:A,B,D,F,E,C,G TS 6:A,B,D,F,C,E,G

 TS 7:A,B,D,C,F,E,G TS 8:A,B,D,C,E,F,G TS 9:A,C,B,D,E,F,G

 TS 10:A,C,B,D,F,E,G Number of Different Topological ordering =10

A

B C

D

E F

G

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 A_ _ _ _ _ G

 B come before D , D come before E or F.

 C can come between any place of B,D,E,F.

5!

4!

2!
×1!

 =10

A

B C

D

E F

G

A

B C

C D

D

E F

F

G

E

G

E F C

F C

C

G

F

G

E C

C

G

E

G

E F

F

G

E

G

B

D

E F

F

G

E

G
M

on
ali

sa
CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Example 2:

 DFS1:B1/12,A2/9,C3/8,E4/5,F6/7,D10/11 , TS1: B ,D ,A, C, F, E

 DFS2:B1/12,A2/9,C3/8,F4/5,E6/7,D10/11 , TS2: B ,D ,A, C, E, F

 DFS3:B1/12,D2/9,C3/8,F4/5,E6/7,A10/11 , TS3: B ,A ,D, C, E, F

 DFS4:B1/12,D2/9,C3/8,E4/5,F6/7,A10/11 , TS4: B ,A ,D, C, F, E

 Number of Different Topological ordering =4

 2nd way : source-removal algorithm

 Indegree:(B,0),(A,1),(D,1),(E,1),(F,1),(C,2)

 Remove B with its outgoing edge and insert in Queue .

 Indegree:(A,0),(D,0),(E,1),(F,1),(C,2), Remove A or D let A .

 Indegree:(D,0),(E,1),(F,1),(C,1), Remove D .

 Indegree:(C,0),(E,1),(F,1), Remove C .

 Indegree:(E,0),(F,0), Remove E or F let E.

 Remove F and insert in Queue .

 Topological sort 1:B,A,D,C,E,F ,Topological sort 2:B,A,D,C,F,E

 Topological sort 3:B,D,A,C,E,F, Topological sort 4:B,D,A,C,F,E

A

B

C

D

E

F

B

A D

AD

C

E F

F E

C

E F

F E

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Decrease-by-a-Constant-Factor Algorithms
 Decrease-by-a-constant-factor algorithms usually run in logarithmic time.
➢ Binary Search
 Binary search is a algorithm for searching in a sorted array.
 It works by comparing a search key K with the array’s middle element A[m].
 If they match, the algorithm stops; otherwise, the same operation is repeated recursively

for the first half of the array if K < A[m], and for the second half if K > A[m]:

 ALGORITHM BinarySearch(A[0..n - 1], K)
 //Input: An array A[0..n - 1] sorted in ascending order and a search key K.
 //Output: An index of the array’s element that is equal to K or -1 if there is no such element
 l ← 0; r ← n – 1
 while l ≤ r do
 m ← Τ𝑙 + 𝑟 2
 if K = A[m] return m
 else if K < A[m] r ← m – 1
 else l ← m + 1
 return -1
 The worst-case inputs include all arrays that do not contain a given

search key, as well as some successful searches.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Since after one comparison the algorithm faces the same situation but for an array half the size

, we get the following recurrence relation for Cworst(n):

 Cworst(n) = Cworst⌊n ∕ 2⌋+ 1 for n > 1, Cworst(1) = 1.

 T(n)=T(n/2)+1

 a=1,b=2,f(n)=1

 nlogba= nlog21 =n0=1

 Case 2 : f(n)=Θ(nlogba) then T(n) is Θ(nlogba *log n)

 T(n) is Θ(log n)

 Cworst(n) = log2 n + 1 . CBest (n) =1

 As an example, let us apply binary search to searching for K = 70 in the array

index 0 1 2 3 4 5 6 7 8 9 10 11 12

value 3 14 27 31 39 42 55 70 74 81 85 93 98

1 l m r

2 l m r

3 l,m r

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Decrease-and-Conquer Recurrence

 Master Theorem for Decrease & conquer Recurrence

 T(n)=aT(n-b)+f(n) [a>0 ,b>0 ,T(d)=c Initial condition ,n>d]

 Case 1:if a<1, T(n) is O(f(n))

 Case 2:if a=1, T(n) is O(n*f(n))

 Case 3:if a>1, T(n) is O(an/b*f(n))

 Ex 1: T(n)=T(n-1)+1

 Ex 2: T(n)=T(n-1)+n

 Ex 3: T(n)=T(n-1)+log n

 Ex 4: T(n)=n*T(n-1)+1

 Ex 5: T(n)=2T(n-1)+1

 Ex 6: T(n)=2T(n-1)+n

 Ex 7: T(n)=1/2T(n-1)+log n

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

	Slide 1
	Slide 2
	Slide 3
	Slide 4: Decrease-and-Conquer
	Slide 5
	Slide 6
	Slide 7: Topological Sort
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Decrease-by-a-Constant-Factor Algorithms
	Slide 13
	Slide 14

