
Compiler Design

Chapter 3:RTE

GATE CS Lectures

 by Monalisa
M

on
ali

sa
CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Section 7: Compiler Design

 Lexical analysis, parsing, syntax-directed translation. Runtime environments.

Intermediate code generation . Local optimization, Data flow analyses: constant

propagation, liveness analysis, common subexpression elimination.

 Chapter 1: Introduction to Compiler [Language processing System ,Compiler ,Phases

of Compiler , Lexical Analysis]

 Chapter 2: Parsing [Syntax Analysis , CFG, Ambiguous Grammar , Recursive

Grammar ,Left Factoring ,Top down parser : LL(1),FIRST & FOLLOW , Bottom up

parser : shift-reduce parsing ,LR(0),SLR(1),CLR(1), LALR(1), Operator Precedence

grammar]

 Chapter 3:SDT,Code generation & optimization [syntax-directed translation.

Runtime environments. Intermediate code generation . Local optimization, Data flow

analyses: constant propagation, liveness analysis, common subexpression

elimination.]

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Syntax Directed Translation:
 A syntax-directed definition (SDD) is a context-free grammar together with attributes

and rules or actions.

 Attributes are associated with grammar symbols and rules are associated with

productions.

 If X is a symbol and a is one of its attributes , then we write X.a to denote the value

of a at a particular parse-tree node labeled X.

 Ex : S→AB{print (“TOC”)} , A →a{print (“CD”)}, B →b{print (“Alg”)}

 Application:
1) Constructing annotated parse tree.

2) Store type information into symbol table.

3) To evaluate algebraic expression.

4) To verify variable declaration. type checking ,type conversion ,type equivalence etc.

5) To convert postfix or prefix notation.

6) To generate intermediate code & target code.

7) To verify proper use of operator.

8) To construct DAG.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Annotation=a note of explanation or comment added to a text or diagram.

 Attaching attribute to the identifier.

 Annotated / decorated parse tree:

 A parse tree, showing the value(s) of its attribute(s) is called an annotated parse tree.

 Before we can evaluate an attribute at a node of a parse tree, we must evaluate all the

attributes upon which its value depends.

 Ex:

 Production Semantic rules

 E→E+E {E.val=E1.val+E2.val}

 E→ E*E {E.val=E1.val*E2.val}

 E→ id {E.val=id.val}

 Input=2+3*5

 Output=17

SDT
Input

Parse Tree

Output

Annotated Parse Tree

E

E + E

id E * E

id id

.val=17

.val=2

.val=2

.val=3

.val=15

.val=5

.val=3 .val=5
M

on
ali

sa
CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Classification of Attributes:

 Based on process of evaluation attribute are classified into two type.

 Synthesized and Inherited Attributes

 1.The attribute whose value is evaluated from the attribute values of children is

called as synthesized attribute.

 A synthesized attribute for a nonterminal A at a parse-tree node N is defined by a

semantic rule associated with the production at N. A must be head.

 A synthesized attribute at node N is defined only in terms of attribute values at the

children of N and at N itself.

 2. The attribute whose value is evaluated from the attribute values of parent or

sibling is called as inherited attribute.

 An inherited attribute for a nonterminal B at a parse-tree node N is defined by a

semantic rule associated with the production at the parent of N.

 Note that the production must have B as a symbol in its body.

 An inherited attribute at node N is defined only in terms of attribute

values at N's parent, N itself, and N's siblings.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 With synthesized attributes, we can evaluate attributes in any bottom-up order, such as
that of a postorder traversal of the parse tree.

 With Inherited attributes, we can evaluate attributes in any top-down order, such as that of
a preorder traversal of the parse tree.

 Evaluation Orders for SDD’s:
 “Dependency graphs” are a useful tool for determining an evaluation order for the

attribute instances in a given parse tree.
 While an annotated parse tree shows the values of attributes, a dependency graph helps us

determine how those values can be computed.
 A dependency graph depicts the flow of information among the attribute instances in a

particular parse tree; an edge from one attribute instance to another means that the value
of the first is needed to compute the second.

 Edges express constraints implied by the semantic rules
 Ex: Production Semantic Rule
 E → E1 + T E.val = E1.val + T.val
 E.val is synthesized from E1.val and T.val
 parse tree edges as dotted lines, while the
 edges of the dependency graph are solid.

E1

E

+ T.val .val

.valM
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 If there is any cycle in the graph, then there are no topological sorts; that is , there is
no way to evaluate the SDD on this parse tree.

 If there are no cycles, however, then there is always at least one topological sort.
 S-attributed definition
 An SDD is S-attributed if every attribute is synthesized.
 It is simple to evaluate the attributes by performing a post order traversal of the parse

tree and evaluating the attributes at a node N when the traversal leaves N for the last
time.

 S-attributed definitions can be implemented during bottom-up parsing, since a
bottom-up parse corresponds to a post order traversal.

 Post order corresponds exactly to the order in which an LR parser reduces a
production body to its head.

 Semantic action will be placed at right end of production .
 L-attributed definitions
 In dependency-graph edges between the attributes associated with a production body

can go from left to right, but not from right to left(hence “L-attributed").
 Each attribute must be either
 1. Synthesized, or
 2. Inherited, but with the rules limited as follows.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Suppose there is a production A → X1X2 …. Xn, and an inherited attribute Xi.a

computed by a rule associated with this production.

 (a) Inherited attributes associated with the head A.

 (b) Either inherited or synthesized attributes associated with the occurrences of

symbols X1, X2,…., Xi-1 located to the left of Xi.

 (c) Inherited or synthesized attributes associated with this occurrence of Xi itself, but

only in such a way that there are no cycles in a dependency graph formed by the

attributes of this Xi.

 Semantic action can be placed anywhere on body of production.

 Ex: S→A {print 1}B

 A → a{print 2}

 B → {print 3}b

 Every S-attributed SDD is L-attributed SDD.

 Every L-attributed SDD can be converted into S-attributed SDD.

 L-attributed SDD can be parsed top-down.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 The rules for turning an L-attributed SDD into an SDT are as follows:
 1. Embed the action that computes the inherited attributes for a nonterminal A

immediately before that occurrence of A in the body of the production.
 If several inherited attributes for A depend on one another in an acyclic fashion, order the

evaluation of attributes so that those needed first are computed first.
 2. Place the actions that compute a synthesized attribute for the head of a production at

the end of the body of that production.
 The following methods do translation by traversing a parse tree:
 1. Build the parse tree and annotate.
 2. Build the parse tree, add actions, and execute the actions in pre order.

S-Attributed SDT L-Attributed SDT

➢ Based on Synthesized attributes. ➢ Based on both synthesized & Inherited attributes with

restriction to inherit from parent or left sibling only.

➢ Semantic rules always placed at

rightmost position of RHS.

➢ Semantic rules can be placed

anywhere on RHS.

➢ Attributes are evaluated bottom

up , post order traversal.

➢ Attributes are evaluated top down ,pre

order traversal or depth first traversal

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Any SDT can be implemented by first building a parse tree and then performing the

actions in a left-to-right depth-first order; that is, during a preorder traversal.

 1. The underlying grammar is LR-parsable, and the SDD is S-attributed.

 2. The underlying grammar is LL-parsable, and the SDD is L-attributed.

 SDT's with all actions at the right ends of the production bodies are called postfix

SDT’s.

 Postfix SDT's can be implemented during LR parsing by executing the actions when

reductions occur.

 An action may be placed at any position within the body of a production.

 It is performed immediately after all symbols to its left are processed.

 If we have a production B → X{a}Y , the action a is done after we have recognized

X (if X is a terminal) or all the terminals derived from X (if X is a nonterminal).M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Steps for evaluating SDT:
 Build the parse tree, add actions, and execute the actions
 Ex 1: SDT to count number of parenthesis.
 Production Semantic Rules
 S →(S) {S.count=S.count+1}
 S → ϵ {S.count=0}
 Input=((()))

S

(

S

)

(
S

)

(

S

)

ϵ

.count=0

.count=0+1=1

.count=1+1=2

.count=2+1=3

 Output=3
 S-attributed SDT
 Ex 2:SDT to evaluate arithmetic expression.
 Production Semantic Rules
 E →E+T {E.val=E.val+T.val}
 E →T {E.val=T.val}
 T →T*F {T.val=T.val*F.val}
 T →F {T.val=F.val}
 F →id {F.val=id.val}
 Input=2+3*5
 S-attributed SDT
 Output=17

id

F

T

E +

id

F

T *

id

F

T

E

.val=2

.val=2

.val=2

.val=3

.val=3 .val=5

.val=3*5=15

.val=2+15=17

.val=2

.val=3 .val=5M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Ex 3:SDT to convert into postfix notation.
 Production Semantic Rules
 E →E+T {printf (“+”); }
 E →T { }
 T →T*F {printf (“*”);}
 T →F { }
 F →id {printf(id.val);}
 S-attributed SDT
 Input=a+b*c
 Output=abc*+

E
+

E

T

T

F

id

T
*

F

F

id

id

printf(“a”) printf(“b”)

printf(“c”)

printf(“*”)

printf(“+”)

 Ex 4:SDT to convert into prefix notation.
 E → {printf (“+”); } E+T
 E → { }T
 T → {printf (“*”);}T*F
 T → { }F
 F →{printf(id.val);}id
 L-attributed SDT
 Input=a+b*c
 Output=+a*bc

E +

E

T

T

F

id

T
*

F

F

id

id

printf(“+”)

printf(“a”)

printf(“*”)

printf(“b”)

printf(“c”)

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Ex 5:
 Production Semantic Rules
 E →E#T {E.val=E.val*T.val}
 E →T {E.val=T.val}
 T →T$F {T.val=T.val+F.val}
 T →F {T.val=F.val}
 F →id {F.val=id.val}
 S-attributed SDT
 Input=2#3$5#6$4
 2*3+5*6+4 [$>#, #,$ left associative]
 =2*(3+5)*(6+4)
 =2*8*10
 =16*10=160

E
#

E

T

E
T

T

F

id

T
$

F

F

id

id

T
$

F

F

id

id

.val=2

.val=2

.val=2

.val=2

.val=3

.val=3

.val=3

.val=5

.val=5

.val=8

.val=16

.val=6

.val=6

.val=6

.val=4

.val=4

.val=10

.val=160

 Ex 6:GATE 1995
 Production Semantic Rules
 S →xxW {print “1” }
 S →y {print “2” }
 W →Sz {print “3” }
 Input =xxxxyzz

S

x
x

W

S z

x
x

W

S z

y
printf(2)

printf(3)

printf(1)

printf(3)

printf(1)

 Output=23131

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Construction of Syntax Trees:
 Each object will have an op field that is the label of the node with additional fields as

follows:
 1.If the node is a leaf, an additional field holds the lexical value for the leaf.
 A constructor function Leaf (op, val) creates a leaf object.
 2.If the node is an interior node, there are as many additional fields as the node has

children in the syntax tree.
 A constructor function Node takes two or more arguments: Node(op, c1, c2,…,ck)

creates an object with first field op and k additional fields for the k children c1,….ck.
 Ex 7:
 Production Semantic Rules
 E →E1+T {E.node=new Node(‘+’,E1.node,T.node)}
 E →E1-T {E.node=new Node(‘-’,E1.node,T.node)}
 E →T {E.node=T.node}
 T →(E) {T.node=E.node}
 T →id {T.node=new Leaf(id , id.val)}
 S-attributed SDT, Rules are evaluated
 during a post order traversal or with
 reductions during a bottom-up parse .
 Syntax tree for a-b+c.

E

E

+
T

E
-

T

T

id

id

id

id a id b

- id c

+M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Ex 8:Syntax tree construction
 Production Semantic Rules
 E →T𝐸′ {E.node=𝐸′.syn ,𝐸′.inh=T.node }
 𝐸′ →+T𝐸1

′ {𝐸1
′ .inh=new Node(‘+’, 𝐸′.inh,T.node), 𝐸′.syn= 𝐸1

′ .syn}
 𝐸′ →-T𝐸1

′ {𝐸1
′ .inh=new Node(‘-’, 𝐸′.inh,T.node), 𝐸′.syn= 𝐸1

′ .syn}
 𝐸′ → ϵ {𝐸′.syn= 𝐸1

′ .inh}
 T →(E) {T.node=E.node}
 T →id {T.node=new Leaf(id , id.val)}
 Inherited attribute inh ,Synthesized attribute syn.L-Attributed SDT
 Syntax tree for a-b+c.

T

E

𝐸′

- T
𝐸′

id

id
+ T

𝐸′

id
ϵ

1

id a
2 node 3 inh

4
id b

5 node

6 inh

7

8 node id c
9 inh 10 syn

+11 syn

12 syn

-
13

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Ex 9:Array declaration
 In C, int [2][3] =array(2, array(3, integer))

 can be read as,“array of 2 arrays of 3 integers.”

2

array

array

3 integer

 Production Semantic Rules

 T →BC {T.t=C.t , C.b=B.t}

 B →int {B.t=integer}

 B →float {B.t=float}

 C →[num]C1 {C.t=array(num.val,C1.t), C1.b=C.b}

 C → ϵ {C.t= C.b}

 T generates either a basic type or an array type.

 T generates a basic type when T derives B C and C derives ϵ
 B generates one of the basic types int and float.

 C generates array components consisting of a sequence of integers, surrounded by brackets.

 B and T have a synthesized attribute ‘t’ representing a type.

 C has two attributes: an inherited attribute ‘b’ and a synthesized attribute ‘t’.

 L-Attributed SDT ,The inherited b attributes pass a basic type down

 the tree, and the synthesized t attributes accumulate the result.

T

B C

int [2] C

[3] C

ϵ

.t=integer .b=integer

.b=integer

.b=integer
.t=integer

.t=array(3,integer)

.t=array(2,array(3,integer))

.t=array(2,array(3,integer))

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Intermediate-Code Generation

 The front end translates a source program into an intermediate representation from which the

back end generates target code.

 Static checking includes type checking, which ensures that operators are applied to compatible

operands. It also includes any syntactic checks that remain after parsing.

 Benefits of using a machine-independent intermediate form are:

 1. Retargeting is facilitated. That is, a compiler for a different machine can be created by

attaching a back end for the new machine to an existing front end.

 2. A machine-independent code optimizer can be applied to the intermediate representation.

 In the process of translating a program in a given source language into code for a given target

machine, a compiler may construct a sequence of intermediate representations

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 High-level representations are close to the source language and low-level representations
are close to the target machine.

 Syntax trees are high level; well suited to tasks like static type checking.
 A low-level representation is suitable for machine-dependent tasks like register allocation

and instruction selection.
 Three-address code can range from high- to low-level, depending on the choice of

operators.
 The term "three-address code' comes from instructions of the general form z = y op x

with three addresses: two for the operands y and x and one for the result z.
 The choice or design of an intermediate representation varies from compiler to compiler.
 Intermediate code can be represented in following representation
 Non linear: Syntax Tree ,DAG ,Control Flow Graph
 Linear :Postfix code, Three-address code , SSA code
 DAG:
 Variants of Syntax Trees
 A directed acyclic graph (DAG) for an expression identifies the common subexpressions

(subexpressions that occur more than once) of the expression.
 DAG's can be constructed by using the same
 techniques that construct syntax trees.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Directed Acyclic Graphs for Expressions
 A DAG has leaves corresponding to atomic operands and interior nodes corresponding to

operators.
 The difference is that a node N in a DAG has more than one parent if N represents a

common subexpression.
 In a syntax tree, the tree for the common subexpression would be replicated as many

times as the subexpression appears in the original expression.
 Thus, a DAG not only represents expressions more succinctly, it gives the compiler

important clues regarding the generation of efficient code to evaluate the expressions.
 Ex 1: Shows the DAG for the expression a + a * (b - c) + (b - c) * d

b c

-a

*
*

d

+

+

 The leaf for a has two parents, because a appears twice in the
expression.

 The two occurrences of the common subexpression b-c are
represented by one node, That node has two parents , representing its
two uses in the subexpressions a*(b-c) and (b-c)*d.

 The SDD can construct either syntax trees or DAG’s.
 It will construct a DAG if , before creating a new node, these

functions first check whether an identical node already exists.
 If a previously created identical node exists, the existing node is

returned.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Shows the DAG for the expression

 Ex 2: (a+b)*(a+b+c)

a b

+
c

+

*

 Ex 3:((x+y)-((x+y)*(x-y)))+((x+y)*(x-y))

x y

+ -

*
-

+
 Ex 4:a+b+(a+b)

a b

+

+

 Ex 5:a+b+a+b

a b

+
+

+

 Ex 6:a+a+(a+a+a+(a+a+a+a))

a

+

a

+

+

+

+

+ Ex 7:
 a=b+c
 d=b+a
 e=d+a

a b

+

b c

+

+

+

 Ex 8:
 a=b+c
 b=a-d
 c=b+c
 d=a-d

b c

+ d

-

+

 Ex 9:
 d=b*c
 e=a+b
 b=b*c
 a=e-d

b c

*

a

+

-
M

on
ali

sa
CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 The Value-Number Method for Constructing DAG’s:

 The nodes of a syntax tree or DAG are stored in an array of records.

 Each row of the array represents one record, and therefore one node.

 In each record, the first field is an operation code, indicating the label of the node.

 leaves have one additional field, which holds the lexical value (either a symbol-table

pointer or a constant), and interior nodes have two additional fields indicating the left

and right children.

 Nodes of a DAG for i = i + 10 allocated in an array.

i 10

+

=
1 id i

2 num 10

3 + 1 2

4 = 1 3

 In array, we refer to nodes by giving the integer index

of the record for that node within the array.

 This integer called the value number for the node or for the expression

represented by the node.

 The node labeled + has value number 3, and its left and right children

have value numbers 1 and 2, respectively.

 value numbers help us construct expression DAG’s efficiently

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Three-Address Code
 Three-address code is a sequence of statements of the form x = y op z.

 Where x, y and z are names, constants, or compiler-generated temporaries; op stands for any

operator, such as arithmetic operator, or a logical operator on Boolean valued data.

 The expression x+ y*z might be translated into the sequence of three-address instructions

 t1 = y * z

 t2 = x + t1

 Advantages : The complicated arithmetic expressions and of nested flow-of-control

statements makes three-address code desirable for target code generation and optimization.

 Three-address code is a linearized representation of a syntax tree or a DAG in which explicit

names correspond to the interior nodes of the graph.

 Ex 1: A DAG and its three-address code for the expression a + a * (b - c) + (b - c) * d

 t1 = b – c
 t2 = a * t1

 t3 = t1* d
 t4 = a + t2

 t5 = t4+ t3

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Addresses and Instruction

 Three-address code is built from two concepts: addresses and instructions.

 An address can be one of the following.

 A name . we allow source-program names to appear as addresses in three-address code.

 In an implementation, a source name is replaced by a pointer to its symbol-table entry, where

all information about the name is kept.

 A constant. a compiler must deal with many different types of constants and variables.

 A compiler-generated temporary. It is useful, in optimizing compilers, to create a distinct

name each time a temporary is needed.

 The common three-address statements are:

 1. Assignment statements of the form x = y op z, where op is a binary arithmetic or logical

operation.

 2. Assignment instructions of the form x = op y, where op is a unary operation.

 Essential unary operations include unary minus, logical negation,shift operators, and

conversion operators

 3. Copy instructions of the form x = y,x is assigned the value of y.

 4. The unconditional jump goto L. The three-address statement with label

L is the next to be executed.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 5. Conditional jumps such as if x goto L and if False x goto L.

 These instructions execute the instruction with label L next if x is true and false, respectively.

 Otherwise, the following three-address instruction in sequence is executed next, as usual.

 6. Conditional jumps such as if x relop y goto L, which apply a relational operator (<, ==, >=,
etc.) to x and y, and execute the instruction with label L next if x stands in relation relop to y.

 If not, the three-address instruction following is executed next, in sequence.
 7. Indexed copy instructions of the form x = y[i] and x[i] = y.
 The instruction x = y[i] sets x to the value in the location i memory units beyond location y.

The instruction x[i] = y sets the contents of the location i units beyond x to the value of y.
 8. Address and pointer assignments of the form x = &y, x =*y, and *x= y.
 9. Procedure calls and returns are implemented using the following instructions: param x for

parameters; call p, n and y = call p, n for procedure and function calls, respectively; and
return y, where y, representing a returned value, is optional.

 param x1

 param x2

 ………

 param xn

 call p,n
 generated as part of a call of the procedure p(x1, x2, …. ,xn).

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Two possible translations: symbolic label , position numbers
 1.Uses a symbolic label L, attached to the instruction.
 2.The position numbers for the instructions, starting arbitrarily at position.
 Ex 1 : Consider the statement do i = i+1;
 while (a[i] < v);
 In both translations, the last instruction is a conditional jump to the first instruction.
 The multiplication i * 8 is for an array of elements that each take 8 units of space.
 Symbolic labels
 L: t1=i+1
 i= t1
 t2=i*8
 t3=a [t2]
 If t3<v goto L
 Position numbers
 100: t1=i+1
 101: i= t1
 102: t2=i*8
 103: t3=a [t2]
 104: If t3<v goto 100

 Ex 2:x+y*z^d

 t1=z^d

 t2=y* t1

 t3=x+ t2

 Ex 3:

 if (x<y)

 z=x;

 else

 z=y;

 z=z*z;

 Three address code

 if x≥y goto L0

 z=x

 goto L1

 L0:z=y

 L1:z=z*z

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Three-Address Code for Array

 1D Array : int a[i]

 Loc a[i]= L0 +i×w

 L0 =Starting location or base

 w=width or size

 Three address code
 t1=i*4
 t2=a [t1]

 2D Array :int a[i][j]

 Let a[r][c]

 Row major order

 Loc a[i][j]= L0 +[i ×c +j] ×w

 Three address code

 t1=i*c

 t2= t1+j

 t3= t2 *4

 t4=a [t3]

 3D Array :int a[i][j][k]

 Let a[r][c][b]

 Row major order

 Loc a[i][j][k]= L0 +[i ×c ×b +j ×b+k] ×w

 Three address code

 t1=i*c

 t2= t1*b

 t3= j *b

 t4= t2+ t3

 t5= t4+k

 t6= t5*4

 t7=a [t6]

 t0 = i ∗ 1024
 t1 = j ∗ 32
 t2 = k ∗ 4
 t3 = t1 + t0
 t4 = t3 + t2
 t5 = X[t4]
 What is value of c,b?
 X[t3 + t2]
 =X[i ∗1024 +j∗32+k∗4]
 =X[i ∗ 256+j ∗ 8+ k]*4
 =X[i ∗32*8+j∗8+k]*4
 int X[][32][8]

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 A three-address statement is an abstract form of intermediate code.

 In a compiler, these statements can be implemented as records with fields for the

operator and the operands.

 Three such representations are called “quadruples”, “triples”, and “indirect triples”.

 Quadruples :

 A quadruple (or just "quad') has four fields, which we call op, arg1,arg2,and result.

 The op field contains an internal code for the operator.

 The three-address instruction x = y + z is represented by placing + in op, y in arg1,z

in arg2, and x in result.

 The following are some exceptions to this rule:

1. Instructions with unary operators like x = minus y or x = y do not use arg2. Note

that for a copy statement like x = y, op is =, while for most other operations, the

assignment operator is implied.

2. Operators like param use neither arg2 nor result.

3. Conditional and unconditional jumps put the target label in result.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Ex 1: Three-address code and quadruples for the assignment a = b * - c +b * - c ;

 For readability, we use actual identifiers like a, b, and c in the fields arg1,arg2, and result,

instead of pointers to their symbol-table entries.

 t1=minus c

 t2=b*t1

 t3= t2+t2

 a= t3

 a.Three-address code

op arg1 arg2 result

0 minus c t1

1 * b t1 t2

2 + t2 t2 t3

3 = t3 a

b.Quadruples Triple :
 In Quad the result field is used primarily for temporary names.
 To avoid entering temporary names into the symbol table, we might refer to a temporary

value by the position of the statement that computes it.
 If we do so, three-address statements can be represented by records with only three fields:

op, arg1 and arg2.
 Using triples, we refer to the result of an operation x op y by its position,

rather than by an explicit temporary name.
 The fields arg1 and arg2, for the arguments of op, are either pointers to

the symbol table or pointers into the triple structure.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Ex 1: Three-address code and quadruples for the assignment a = b * - c +b * - c ;

 t1=minus c

 t2=b*t1

 t3= t2+t2

 a= t3

 a.Three-address code

op arg1 arg2

0 minus c

1 * b (0)

2 + (1) (1)

3 = a (2)

b.Triple

 The copy statement a = t3 is encoded in the triple representation by placing a in the arg1
field and (2) in the arg2 field.

 With quadruples, if we move an instruction that computes a temporary t, then the
instructions that use t require no change.

 With triples, the result of an operation is referred to by its position , so moving an
instruction may require us to change all references to that result.

 This problem does not occur with indirect triples.
 Another implementation of three-address code is that of listing pointers

to triples, rather than listing the triples themselves.
 This implementation is called indirect triples.
 Use an array statement to list pointers to triples in the desired order.

Instruction

100 (0)

101 (1)

102 (2)

103 (3) c.Indirect Triple

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Static Single-Assignment Form
 Static single-assignment form (SSA) is an intermediate representation that facilitates

certain code optimizations.

 All assignments in SSA are to variables with distinct names; hence the term static

single-assignment.

 Every variable has single assignment , definition , meaning .

 Subscripts distinguish each definition of variables in the SSA representation.

 Ex 1: Intermediate program in three-address code and SSA

 p = a + b

 q = p – c

 p = q * d

 p = e – p

 q = p + q

 (a) Three-address code.

 p1 = a + b

 q1 = p1 - c

 p2 = q1 * d

 p3 = e - p2

 q2 = p3 + q1

 (b) Static single-assignment form

 The same variable may be defined in two different control-flow

paths in a program.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Control Flow Graphs
 Control Flow Graph is a group of basic blocks.

 CFG has nodes and edges to define basic blocks and controls.

 The representation is constructed as follows :

➢ 1. Partition the intermediate code into basic blocks, which are maximal sequences of

consecutive three-address instructions with the properties that

a) The flow of control can only enter the basic block through the first instruction in

the block. That is, there are no jumps into the middle of the block.

b) Control will leave the block without halting or branching, except possibly at the

last instruction in the block.

➢ 2. The basic blocks become the nodes of a flow graph, whose edges indicate which

blocks can follow which other blocks.

 Basic Blocks

 A basic block is a sequence of three address codes.

 Control enters only at begin of the sequence.

 Control leave only at the end of the sequence.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Algorithm : Partitioning three-address instructions into basic blocks.

 First, we determine those instructions in the intermediate code that are leaders , The rules

for finding leaders are:

1. The first three-address instruction in the intermediate code is a leader.

2. Any instruction that is the target of a conditional or unconditional jump is a leader.

3. Any instruction that immediately follows a conditional or unconditional jump is a

leader.

 Then, for each leader, its basic block consists of itself and all instructions up to but not

including the next leader or the end of the intermediate program.

 Flow Graphs:

 Once an intermediate-code program is partitioned into basic blocks, we represent the flow

of control between them by a flow graph.

 The nodes of the flow graph are the basic blocks.

 There is an edge from block B to block C if and only if it is possible for the first

instruction in block C to immediately follow the last instruction in block B .

 There is a conditional/unconditional jump from the end of B to the start of C.

 We say that B is a predecessor of C, and C is a successor of B.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 We add two nodes, called the entry and exit, that do not correspond to executable
intermediate instructions.

 There is an edge from the entry to the first executable node of the flow graph.
 There is an edge to the exit from last executed instruction of the program.
 Ex 1:
 1) s=0
 2) i=1
 3) if i>n goto (8)
 4) t=i*i
 5) s=s+t
 6) i=i+1
 7) goto (3)
 8) return s
 Rule 1=1
 Rule 2=3,8
 Rule 3=4,8
 Leader: 1,3,4,8
 B1=1,2 ,B2=3
 B3=4,5,6,7 ,B4=8

Entry

s=0

i=1

if i>n goto B4

t=i*i

s=s+t

i=i+1

goto B2

return s

Exit

B1

B2

B3

B4

 # nodes=6

 # edges= 7

 # loop=1

 B2→B3 → B2

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Ex 2:CFG design

 1) i = 1

 2) j = 1

 3) t1 = 10 * i

 4) t2 = t1 + j

 5) t3 = 8 * t2

 6) t4 = t3 – 88

 7) a[t4] = 0.0

 8) j = j + 1

 9) if j <= 10 goto (3)

 10) i = i + 1

 11) if i <= 10 goto (2)

 12) i = 1

 13) t5 = i – 1

 14) t6 = 88 * t5

 15) a[t6] = 1.0

 16) i = i + 1

 17) if i <= 10 goto (13)

Entry

i = 1B1

j = 1B2

t1 = 10 * i

t2 = t1 + j

t3 = 8 * t2

t4 = t3 – 88

a[t4] = 0.0

j = j + 1

if j <= 10 goto B3

B3

i = i + 1

if i <= 10 goto B2

B4

 Rule 1=1

 Rule 2=2,3,13

 Rule 3=10,12

 Leader:1,2,3,10,12,13

 B1=1,B2=2

 B3=3,4,5,6,7,8,9

 B4=10,11,B5=12

 B6=13,14,15,16,17

i = 1B5

t5 = i – 1

t6 = 88 * t5

a[t6] = 1.0

i = i + 1

if i <= 10 goto B6B6

Exit

 # nodes=8

 # edges=10

 #loop=3

 B3

 B2,B3, B4, B2

 B6
M

on
ali

sa
CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Intermediate code representation

 Nonlinear: Syntax Tree ,DAG ,Control Flow Graph

 Linear :Postfix code, Three-address code , SSA code

 Ex: a=b*c + b*c

 Postfix code

 a b c * b c * + =

 Three-address code

 t1=b*c

 t2= t1 + t1

 a= t2

 SSA code=Three-address code
cb

*

+

cb

*

cb

*

+

=

a

Syntax Tree

DAG

Entry

t1=b*c

t2= t1 + t1

a= t2

Exit

B1

CFGM
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Next-Use Information
 If the value of a variable that is currently in a register will never be referenced

subsequently, then that register can be assigned to another variable.
 The use of a name in a three-address statement is defined as follows.
 Suppose i:x=a
 j:z=x+y
 control can flow from statement i to j along a path that has no intervening

assignments to x, then we say statement j uses the value of x computed at statement i.
 We further say that x is live at statement i.
 Algorithm : Determining the liveness and next-use information for each statement in

a basic block.
 METHOD: We start at the last statement in B and scan backwards to the beginning

of B. At each statement i: x = y + z in B, we do the following:
 1. Attach to statement i the information currently found in the symbol table regarding

the next use and liveness of x, y, and z.
 2. In the symbol table, set x to “not live” and “no next use.”
 3. In the symbol table, set y and z to “live” and the next uses

of y and z to i.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Code Optimization
 Elimination of unnecessary instructions in object code, or the replacement of one sequence of

instructions by a faster sequence of instructions that does the same thing is usually called

“code improvement” or “code optimization”.

 Types of optimization

 1:Machine independent optimization

 2:Machine dependent optimization

 Machine independent optimization:

 The process of optimizing intermediate code instruction is called as machine independent

optimization

 Types of machine independent optimization

 1.Local optimization :optimization within each basic block by itself

 2.Global optimization : how information flows among the basic blocks of a program.

 1.Local optimization

 Local Common Subexpressions elimination

 Dead Code Elimination

 The Algebraic Optimization

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 We construct a DAG for a basic block as follows:

 1. There is a node in the DAG for each of the initial values of the variables appearing in the

basic block.

 2. There is a node N associated with each statement s within the block . The children of N are

those nodes corresponding to statements.

 3. Node N is labeled by the operator applied at s, and also attached to N is the list of variables

for which it is the last definition within the block.

 4. Certain nodes are designated output nodes. These are the nodes whose variables are live on

exit from the block; that is, their values may be used later, in another block of the flow graph.

 The DAG representation of a basic block help us several code improving transformations on

the code represented by the block.

 a) We can eliminate local common subexpressions, that is, instructions that compute a value

that has already been computed.

 b) We can eliminate dead code, that is, instructions that compute a value that is never used.

 c) We can reorder statements that do not depend on one another; such reordering may reduce

the time a temporary value needs to be preserved in a register.

 d) We can apply algebraic laws to reorder operands of three-address

instructions, and sometimes thereby simplify the computation.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Finding Local Common Subexpressions

 Common subexpressions can be detected by noticing, as a new node M is about to be added.

 Ex :A DAG for the block

 a = b + c

 b = a – d

 c = b + c

 d = a - d
cb

+a
d

-b

+c

,d

 There are only three non leaf nodes in the DAG. So the basic block can be replaced by a block
with only three statements.

 as b is not live or dead on exit from the block, then we do not need to compute that variable.
 a = b + c
 d = a – d
 c = d + c
 Dead code elimination
 The code having ‘no next use’ or ‘not live’ are dead code
 Ex: x=a * b
 y=a + c
 z=y + d

cb

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 ‘x’ have ‘no next use’ or ‘not live’

 x is dead code

 After removal of dead code

 y=a+c

 z=y+d

 The Algebraic Optimization:

 1.Algebraic identities, another important class of optimizations on basic blocks. arithmetic

identities, such as x + 0 = 0 + x = x , x- 0 = x

 x * 1 = 1* x = x , x/1 = x

 2.Strength reduction , replacing a more expensive operator by a cheaper one.

 EXPENSIVE CHEAPER

 x2 = x * x

 2 * x = x + x

 x/2 = x* 0.5

 3.Constant folding ,Here we evaluate constant expressions at compile time and replace the

constant expressions by their values.

 2* 3.14 ⇒ 6.28

 x=2*3+y ⇒ x=6+y ;

*x

ba c

+
y

d

+
z

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 4.algebraic Simplification, Apply algebraic transformations such as commutativity and

associativity

 Ex 1: a = b + c

 t = c + d

 e = t + b

 If t is not needed outside this block, we can change this sequence to

 y=2*b

 Ex 2: x=a
 y=x*b y=a*b

 a = b + c
 e = a + d

 Ex 2:x * y- x * z ⇒ x * (y- z)

 Ex 3: y=x+a

 z=y-a

 w=z*b

 Backward substitution

 w=z*b =(y-a)*b= (x+a-a)*b=x*b

 w=x*b

 5.Copy Propagation ,coping constant or variable from one statement to other .

 Ex 1: x=2

 y=x*b

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Representation of Array References
 The proper way to represent array in a DAG is as follows.
 1. x = a[i], is represented by creating a node with operator =[] and two children a,

and index i. Variable x becomes a label of this new node.
 2.a[j] = y, is represented by a new node with operator []= and three children

representing a, j and y. There is no variable labeling this node.
 What is different is that the creation of this node kills all currently constructed nodes

whose value depends on a.
 A node that has been killed cannot receive any more labels; that is, it cannot become

a common subexpression.
 Ex 1:The DAG for the basic block
 x = a[i]
 a[j] = y
 z = a[i]

 The node N for x is created first, but when the node labeled []= is

created, N is killed.

 Thus, when the node for z is created, it cannot be identified with N, and

a new node with the same operands a and i must be created instead.

=[]x

ia

[]=

j y

killed

=[]
z

 a[j] = y

 z = a[i]

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Ex 2:The DAG for the basic block
 b = 12 + a
 x = b[i]
 b[j] = y +b

a12

=[]

i

x

[]=

j y

killed

 A node can kill if it has a descendant that is an array.
 If j and i represent the same value , then b[i] and b[j] represent the same location.
 Therefore it is important to have the third instruction, b[j] = y, kill the node with x as

its attached variable.
 However, as both the killed node and the node that does the killing have a as a

grandchild, not as a child.
 Ex 3:
 t5 = i – 1
 t6 = 88 * t5
 a[t6] = 1.0
 i = i + 1
 if i <= 10 goto B6

-t5

1i

88

*t6a

[]=

1.0

+i

<=

10 B6

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 2.Global Optimizations: The optimization at program level is called as global optimization.

 Global optimizations are based on data- flow analyses , which are algorithms to gather

information about a program.

➢ Types of global optimization

1. Global Common Subexpressions

2. Copy Propagation

3. Dead-Code Elimination

4. Code Motion

5. Induction Variables and Reduction in Strength

 We shall use a fragment of a quicksort to illustrate code-improving transformations.

 i = m-1; j = n; v = a[n];

 while (1) {

 do i = i+1; while (a[i] < v);

 do j = j-1; while (a[j] > v);

 if (i >= j) break;

 x = a[i]; a[i] = a[j]; a[j] = x; /* swap a[i], a[j] */ }

 x= a[i]; a[i] = a[n]; a[n] = x; /* swap a[i], a[n] */

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 (1) i = m-1
 (2) j = n
 (3) t1 = 4*n
 (4) v = a[t1]
 (5) i = i+1
 (6) t2 = 4*i
 (7) t3 = a[t2]
 (8) if t3<v goto (5)
 (9) j = j-1
 (10) t4 = 4*j
 (11) t5 = a[t4]
 (12) if t5>v goto (9)
 (13) if i>=j goto (23)
 (14) t6 = 4*i
 (15) x = a[t6]

 (16) t7 = 4*i

 (17) t8 = 4*j

 (18) t9 = a[t8]

 (19) a[t7] = t9

 (20) t10 = 4*j

 (21) a[t10] = x

 (22) goto (5)

 (23) t11 = 4*i

 (24) x = a[t11]

 (25) t12 = 4*i

 (26) t13 = 4*n

 (27) t14 = a[t13]

 (28) a[t12] = t14

 (29) t15 = 4*n

 (30) a[t15] = x

 Rule 1:1

 Rule 2:5,9,23

 Rule 3:13,14,23

 Leaders:1,5,9,13,14,23

 B1 :1,2,3,4

 B2:5,6,7,8

 B3 :9,10,11,12

 B4:13

 B5:14,15,16,17,18,19,20,21,22

 B6:23,24,25,26,27,28,29,30

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Local Common Subexpression Elimination B5

 t6 = 4*i

 x = a[t6]

 t7 = 4*i

 t8 = 4*j

 t9 = a[t8]

 a[t7] = t9

 t10 = 4*j

 a[t10] = x

 goto B2

 t6 = 4*i

 x = a[t6]

 t8 = 4*j

 t9 = a[t8]

 a[t6] = t9

 a[t8] = x

 goto B2

 1.Global Common Subexpressions Elimination

 An occurrence of an expression E is called a common subexpression if E

was previously computed and the values of the variables in E have not

changed since the previous computation.

 We avoid recomputing E if we can use its previously computed value;

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 B1,B2,B3,B4 no common
subexpression.

 B5 &B6 have common
subexpression.

 4*i present in B2
 t6=t2
 x=a[t6]=a[t2]=t3
 4*j present in B3
 t7=t2 ,t8=t4,
 t9=t5 ,t10=t4
 x=a[t11]=a[t2]=t3
 4*n present in B1
 t13=t1,t12=t2
 t15=t1

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

2.Copy Propagation
 Assignments of the form u = v called copy statements, or copies for short.

 copy-propagation transformation is to use v for u.

 Block B5 after copy propagation

 x = t3

 a[t2] = t5

 a[t4] = x

 goto B2

 x = t3

 a[t2] = t5

 a[t4] = t3

 goto B2

3.Dead-Code Elimination
 A variable is live at a point in a program if its value can be used subsequently; otherwise, it is

dead or no next use at that point.

 A dead (or useless) code statements compute values that never get used.

 Ex : if (debug) print ...

 debug = FALSE

 If copy propagation replaces debug by FALSE, then the print statement is dead because it

cannot be reached.

 One advantage of copy propagation is that it often turns the copy statement into dead code.

 For ex., copy propagation followed by dead-code elimination removes the assignment to x

 a[t2] = t5

 a[t4] = t3

 goto B2

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

4.Code Motion
 Loops are a very important place for optimizations, especially the inner loops where programs

tend to spend the bulk of their time.

 The running time of a program may be improved if we decrease the number of instructions in

an inner loop, even if we increase the amount of code outside that loop.

 Modification that decreases the amount of code in a loop is code motion.

 Ex 1:

 while (i <= limit-2)
 t = limit-2

 while (i <= t)

 Now, the computation of limit-2 is performed once, before we enter the loop.

 Ex 2:

 int i=1,a=2;

 while (i≤50)

 {

 int j=i+a*3;

 printf(j);

 i++;

 }

 int i=1,a=2;
 int b=a*3;
 while (i≤50)
 {
 int j=i+b;
 printf(j);
 i++;
 }

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

5.Induction Variables and Reduction in Strength
 A variable x is said to be an induction variable if there is a positive or negative constant c such

that each time x is assigned, its value increases by c.

 The transformation of replacing an expensive operation, such as multiplication, by a cheaper

one , such as addition, is known as strength reduction.

 When processing loops, it is useful to work “inside-out”; that is, we shall start with the inner

loops and proceed to progressively larger, surrounding loops.

 B3: j=j-1

 t4=4*j

 The values of j and t4 remain in lock step;

 Every time the value of j decreases by 1, the value of t4 decreases by 4, because 4* j is

assigned to t4.

 Eliminate the induction variable j=j-1 .

 t4=t4-4

 B2: i=i+1
 t2=4*i
 Every time the value of i increases by 1, the value of t2 increases by 4,

because 4* i is assigned to t2.
 Move t2=4*i , t4=4*j statement to B1

 t2=t2+4
M

on
ali

sa
CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Flow graph after Copy Propagation , Dead-Code Elimination , Code Motion, induction-

variable elimination & strength reduction

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Data-Flow Analysis
 All the optimizations depend on data- flow analysis.

 Data-flow analysis derive information about the flow of data along program execution paths .

 Flow graph tells us about the possible execution paths.

 We may define an execution path (or just path) from point p1 to point pn to be a sequence of

points p1, p2,…pn such that for each i = 1, 2 ,…. n-1,either

1. pi is the point immediately preceding a statement and pi+1 is the point immediately following

that same statement, or

2. pi is the end of some block and pi+1 is the beginning of a successor block.

 Example of data-flow analysis :

 The shortest execution path consists of the

program points (1,2,3,4,9).

 The next shortest path executes one iteration of

the loop and consists of the points (1, 2, 3, 4, 5,

6, 7, 8, 3, 4, 9).

 First time program point (5) is executed, the

value of a is 1 due to definition d1.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 In subsequent iterations, d3 the value of a is 243 .

 It is not possible to keep track of all the program states for

all possible paths.

 We do not keep track of entire states ;rather, we abstract

out certain details, keeping only the data we need for the

purpose of the analysis.

 1.We may summarize all the program states at point (5) by

saying that the value of a is one of {1, 243}, and it may be

defined by one of {d1, d3}.

 The definitions that may reach a program point along some path are known as reaching

definitions.

 2.If we are interested in implementing constant folding.

 If a use of the variable x is reached by only one definition , then we can simply replace x by

the constant.

 On the other hand, several definitions of x may reach a single program point,

then we cannot perform constant folding on x.

 We may simply describe certain variables as “not a constant,” instead of

collecting all their possible values or all their possible definitions.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

The Data-Flow Analysis Schema
 We associate with every program point a data-flow value that represents an abstraction of

the set of all possible program states.
 We denote the data-flow values before and after each statements by IN[s] and OUT[s].
 The data-flow problem is to find a solution to a set of constraints on the IN[s]'s and

OUT[s]'s, for all statements s.
 There are two sets of constraints : Transfer functions and Control-Flow Constraints
 Transfer Functions
 The data-flow values before and after a statement are constrained by the semantics of the

statement.
 If variable a has value v before executing statement b = a, then both a and b will have the

value v after the statement.
 This relationship between the data-flow values before and after the assignment statement

is known as a transfer function.
 Transfer functions information may propagate forward along execution paths, or it may

flow backwards up the execution paths.
 In a forward-flow problem, the transfer function fs of a statement s, takes

the data-flow value before the statement and produces a new data-flow
value after the statement. OUT[s] = fs(IN[s]).

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 In a backward-flow problem, the transfer function fs for statement s converts a data-

flow value after the statement to a new data-flow value before the statement.

 IN[s] = fs(OUT[s])

 Control-Flow Constraints

 If a block B consists of statements s1, s2,….sn in that order, then the control-flow

value out of si is the same as the control-flow value into si+1.

 That is, IN[si+1] = OUT[si], for all i = 1,2,……,n-1.

 The set of dentitions reaching the leader statement of a basic block is the union of the

definitions after the last statements of each of the predecessor blocks.

 Data-Flow Schemas on Basic Blocks

 If s1 is the first statement of basic block B, then IN[B] = IN[s1] ,if sn is the last

statement of basic block B, then OUT[B] = OUT[sn].

 In a forward-flow problem OUT[B] = fB (IN[B]). [transfer function of block is fB]

 IN[B] =𝑈𝑃 𝑎 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 𝑜𝑓 𝐵 OUT[P]

 In a backward-flow problem IN[B] = fB (OUT[B])

 OUT[B] = 𝑈𝑆 𝑎 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 𝑜𝑓 𝐵 IN[S]

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Reaching Definitions
 A definition d reaches a point p if there is a path from d to p, such

that d is not “killed” along that path.
 We kill a definition of a variable x if there is any other definition of

x anywhere along the path.
 If a definition d of some variable x reaches point p, then d is

the place at which the value of x used at p was last defined.
 Example :

 All the definitions in block B1 reach beginning of block B2.

 The definition d5: j = j-1 in block B2 also reaches the

beginning of block B2, because no other definitions of j can be

found in the loop leading back to B2.

 This definition, however, kills the definition d2: j = n, preventing

it from reaching B3 or B4.

 The statement d4: i = i+1 in B2 does not reach the beginning of

B2 , because the variable i is always redefined by d7: i = u3.

 The definition d6: a = u2 also reaches the beginning of block B2.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Transfer Equations for Reaching Definitions :
 Consider a definition d: u = v+w

 This statement “generates” a definition d of variable u and “kills” all the other definitions in

the program that define variable u.

 The transfer function of definition d can be expressed as fd(x) = gend 𝑈(x- killd)

 Where gend = {d}, the set of definitions generated by the statement, and killd is the set of all

other definitions of u in the program.

 Suppose block B has n statements, with transfer functions fi(x) = geni 𝑈(x- killi) for

i = 1, 2,….., n. Then the transfer function for block B may be written as:

 fB (x) = genB 𝑈(x- killB)

 Where killB = kill1 𝑈 kill2 𝑈…… 𝑈killn

 and genB=genn 𝑈(genn-1- killn)𝑈(genn-2-killn-1-killn) 𝑈….𝑈(gen1-kill2-kill3-….- killn)

 The gen set contains all the definitions inside the block that are “visible”immediately after the

block .we refer to them as downwards exposed.

 A basic block's kill set is union of all the definitions killed by the individual statements .

 gen takes precedence over kill.

 In gen-kill form, kill set is applied before the gen set.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Ex 1 : d1: a = 3
 d2: a = 4

 The gen set for the basic block is {d2} since d1 is not
downwards exposed.

 genB=gen2𝑈(gen1- kill2)=d2 𝑈(d1-d1)=d2

 The kill set contains both d1 and d2, since d1 kills d2
and vice versa.

 killB = kill1 𝑈 kill2=d2 𝑈d1= d1,d2

 Since the subtraction of the kill set precedes the union
operation with the gen set, the result of the transfer
function for this block always includes definition d2.

 Ex 2 :Flow graph for illustrating reaching definitions
 genB1

={d1,d2,d3} , killB1
={d4,d5,d6 ,d7}

 genB2
={d4,d5} , killB2

={d1,d2,d7}

 genB3
={d6} , killB3

={d3}

 genB2
={d7} ,killB2

={d1,d4}

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Control-Flow Equations for Reaching Definitions :

 OUT[P]⊆ IN[B] whenever there is a control-flow edge from P to B.

 IN[B] =𝑈𝑃 𝑎 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 𝑜𝑓 𝐵 OUT[P]

 We refer to union as the meet operator for reaching definitions.

 Iterative Algorithm for Reaching Definitions

 Every control-flow graph has two empty basic blocks, an entry node and an exit node.

 Since no definitions reach the beginning of the graph, the transfer function for the entry block

returns 𝜙 as an answer. That is, OUT[entry] =∅.

 For all basic blocks B other than entry, OUT[B] = genB 𝑈 (IN[B] - killB)

 IN[B] =𝑈𝑃 𝑎 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 𝑜𝑓 𝐵 OUT[P]

 Iterative algorithm to compute reaching definitions

1) OUT[entry] = ∅;

2) for (each basic block B other than entry) OUT[B] =∅;

3) while (changes to any OUT occur)

4) for (each basic block B other than entry) {

5) IN[B] = 𝑈𝑃 𝑎 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 𝑜𝑓 𝐵 OUT[P]

6) OUT[B] = genB 𝑈 (IN[B]- killB);

 }

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Live-Variable Analysis
 In live-variable analysis we wish to know for variable x and point p whether the value of x at

p could be used along some path in the flow graph starting at p.

 If so, we say x is live at p; otherwise, x is dead at p.

 An important use for live-variable information is register allocation for basic blocks.

 After a value is computed in a register, and used within a block, it is not necessary to store that

value if it is dead at the end of the block.

 Also, if all registers are full and we need another register, we should favor using a register

with a dead value, since that value does not have to be stored.

 Another use is dead code elimination .

 In data-flow equations IN[B] and OUT[B], represent the set of variables live at the points

immediately before and after block B, respectively.

 These equations can also be derived by first defining the transfer functions of individual

statements and composing them to create the transfer function of a basic block.

1. defB as the set of variables defined (i.e., definitely assigned values) in B

prior to any use of that variable in B, and

2. useB as the set of variables whose values may be used in B prior to any

definition of the variable.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Ex:block B2 i=i+1

 j=j-1 useB2
={i , j}, defB2

 ={i , j}, as well.

 Any variable in useB must be considered live on entrance to block B, while definitions of

variables in defB are dead at the beginning of B.

 Thus, the equations relating def and use to the IN and OUT are defined as follows:

 IN[exit] = ∅

 No variables are live on exit from the program

 And for all basic blocks B other than exit,

 IN[B] = useB 𝑈 (OUT[B] - defB)

 A variable is live coming into a block if either it is used before redefinition in the block or it is

live coming out of the block and is not redefined in the block.

 OUT[B] =𝑈𝑆 𝑎 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 𝑜𝑓 𝐵 IN[S]

 A variable is live coming out of a block if and only if it is live coming into one of its

successors.

 Relationship between equations for liveness and the reaching-definitions

 1.Both sets of equations have union as the meet operator.

 In each data-flow schema we propagate information along paths, and we

care only about whether any path with desired properties exist.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 2.However, information flow for liveness travels “backward”, opposite to the direction of

control flow,

 Because in this problem we want to make sure that the use of a variable x at a point p is

transmitted to all points prior to p in an execution path, so that we may know at the prior

point that x will have its value used.

 To solve a backward problem, instead of initializing OUT[entry], we initialize IN[exit].

 Sets IN and OUT have their roles interchanged, and use and def substitute for gen and kill,

respectively.

 As for reaching definitions, the solution to the liveness equations is not necessarily unique,

and we want the solution with the smallest sets of live variables.

 Algorithm : Live-variable analysis

1) IN[exit] = ∅;

2) for (each basic block B other than exit) IN[B] = ∅;

3) while (changes to any IN occur)

4) for (each basic block B other than exit) {

5) OUT[B] =𝑈𝑆 𝑎 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 𝑜𝑓 𝐵 IN[S]

6) IN[B] = useB 𝑈 (OUT[B] - defB)

 }

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Variable b is use in 4, so b is live on the (3 → 4) edge.

 3 does not assign into b, b is also live on the (2→3) edge

 Statement 2 assigns b, so any value of b on the (1→2) and (5→

2) edges are not needed, so b is dead along these edges

 b’s live range is (2→3→4)

 a’ is live from (1→2) and again (4→5→2) a is dead (2→3→4)

Difference Between Reaching Definition & Live variable analysis

Reaching Definition Liveness Analysis

Domain Sets of definitions Set of variable

Direction Forwards Backwards

Transfer Function(fB(x)) genB 𝑈(x- killB) useB 𝑈 (x - defB)

Boundary OUT[entry] =∅ IN[exit] = ∅

Meet(∧) 𝑈 𝑈

Equations OUT[B] = fB (IN[B]).

IN[B]=𝑈𝑃 𝑎 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 𝑜𝑓 𝐵 OUT[P]

IN[B] = fB (OUT[B])

OUT[B] = 𝑈𝑆 𝑎 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 𝑜𝑓 𝐵 IN[S]

Initialize OUT[B] =∅ IN[B] =∅

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Example Live-variable analysis

 OUT[B] =𝑈𝑆 𝑎 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 𝑜𝑓 𝐵 IN[S]

 IN[B] = useB 𝑈 (OUT[B] - defB)

 useB1
 ={m,n,u1}, defB1

 ={i,j,a}

 useB2
 ={i,j}, defB2

 ={i,j}

 useB3
 ={u2}, defB3

 ={a}

 useB4
 ={u3}, defB4

 ={i}

 IN[exit] = ∅

 OUT[B4]=IN[exit] 𝑈 IN[B2] =∅ 𝑈 {i,j,u2,u3}={i,j,u2,u3}

 IN[B4] = (u3} 𝑈 ({i,j,u2,u3}- {i})={j,u2,u3}

 OUT[B3]= IN[B4] ={j,u2,u3}

 IN[B3] ={u2} 𝑈 ({j,u2,u3}- {a})={j,u2,u3}

 OUT[B2]= IN[B3] 𝑈 IN[B4] ={j,u2,u3} 𝑈{j,u2,u3}={j,u2,u3}

 IN[B2]={i,j} 𝑈({u2,u3,j,}-{i,j})={i,j,u2,u3}

 OUT[B1]= IN[B2]={i,j,u2,u3}

 IN[B1]={m,n,u1} 𝑈 ({i,j,u2,u3}-{i,j,a})={m,n,u1,u2,u3}

 i is live B1-B2,B4-B2.

 j is live B1-B2-B3-B4-B2

 or B1-B2-B4-B2

 m,n,u1 dead after B1.

 i dead after B2.
 a dead after B1 & B3.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Available Expressions
 An expression x + y is available at a point p if every path from the entry node to p evaluates x

+ y, and after the last such evaluation prior to reaching p.
 A block generates expression x + y if it definitely evaluates x + y and does not subsequently

define x or y.
 The primary use of available-expression information is for detecting global common

subexpressions.
 The expression 4* i in block B3 will be a common

subexpression if 4*i is available at the entry point of B3.

 It will be available if i is not assigned a new value in

block B2, or 4* i is recomputed after i is assigned in B2.

 Ex :After the first, b + c is available.After the second
statement, a-d becomes available, but b + c is
no longer available, as b has been redefined.

 The third statement does not make b + c available again,
because the value of c is immediately changed.

 After the last statement, a-d is no longer available, as d
has changed.

 Thus no expressions are generated, all expressions
involving a, b, c, or d are killed.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Code Generation
 The input to the code generator is the intermediate representation, along with information in

the symbol table that is used to determine the run-time addresses of the data objects denoted

by the names in the IR .

 The many choices for the IR include three-address representations such as quadruples, triples,

indirect triples; virtual machine representations such as bytecodes and stack-machine code;

linear representations such as post fix notation , SSA code; and graphical representations such

as syntax trees and DAG’s.

❖ The Target Program

 The most common target-machine architectures are RISC (reduced instruction set computer),

CISC (complex instruction set computer), and stack based.

 A RISC machine has many registers, three-address instructions, simple addressing modes, and

a relatively simple instruction-set architecture.

 A CISC machine has few registers, two-address instructions, a variety of addressing modes,

several register classes, variable-length instructions, and instructions with side effects.

 In a stack-based machine, operations are done by pushing operands onto a

stack and then performing the operations on the operands at the top of the stack.

 To achieve high performance the top of the stack is typically kept in registers.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

❖ Register Allocation:
 A key problem in code generation is deciding what values to hold in what registers.
 Registers are the fastest computational unit on the target machine , but we usually do not

have enough of them to hold all values.
 Values not held in registers need to reside in memory.
 Instructions involving register operands are faster than those involving operands in

memory, so efficient utilization of registers is important.
 The use of registers is often subdivided into two subproblems:
1. Register allocation, during which we select the set of variables that will reside in

registers at each point in the program.
2. Register assignment, during which we pick the specific register that a variable will

reside in.
❖ Operations on Target Machine
 Our target computer models a three-address machine with load and store operations,

computation operations, jump operations, and conditional jumps.
❖ Load operations: The instruction LD dst, addr loads the value in location addr into

location dst . This instruction denotes the assignment dst = addr.
 LD r, x which loads the value in location x into register r.
 LD r1, r2 is a register-to-register copy in which the contents of register r2

are copied into register r1.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

❖ Store operations: The instruction ST x, r stores the value in register r into the location x.
This instruction denotes the assignment x = r.

❖ Computation operations of the form OP dst, src1, src2, where OP is a operator like ADD
or SUB, and dst, src1, and src2 are locations, not necessarily distinct.

 For example, SUB r1, r2, r3 computes r1 = r2 - r3.
❖ Unconditional jumps: The instruction BR L causes control to branch to the machine

instruction with label L. (BR stands for branch.)
❖ Conditional jumps of the form Bcond r, L, where r is a register, L is a label , and cond

stands for any of the common tests on values in the register r.
 For example, BLTZ r, L causes a jump to label L if the value in register r is less than zero,

and allows control to pass to the next machine instruction if not.
❖ Addressing Modes:
❖ A location can be a variable name x referring to the memory location that is reserved for

x (that is, the l-value of x).
❖ A location can also be an indexed address of the form a(r), where a is a variable and r is

a register.
 The memory location denoted by a(r) is computed by taking the l-value of a and adding

to it the value in register r.
 For example, the instruction LD R1, a(R2) has the effect of setting

R1 = contents(a + contents(R2)), where contents(x) denotes the
contents of the register or memory location represented by x.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Indexed address is useful for accessing arrays, where a is the base address , and r
holds the number of bytes past that address.

❖ A memory location can be an integer indexed by a register.
 For example, LD R1, 100(R2) has the effect of setting R1 = contents(100

+contents(R2)).
 That is loading into R1 the value in the memory location obtained by adding 100 to

the contents of register R2.
 This is useful for following pointers.
❖ Two indirect addressing modes: *r means the memory location found in the

location represented by the contents of register r and *100(r) means the memory
location found in the location obtained by adding 100 to the contents of r.

 For example, LD R1, *100(R2) has the effect of setting R1 = contents(contents(100
+ contents(R2))),

 That is, of loading into R1 the value in the memory location stored in the memory
location obtained by adding 100 to the contents of register R2.

❖ Immediate constant addressing mode: The constant is prefixed by #.
 The instruction LD R1, #100 loads the integer 100 into register R1,

and ADD R1, R1, #100 adds the integer 100 into register R1.
 Comments at the end of instructions are preceded by //.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

❖Examples of machine instructions
Ex 1:x = y + z:

 LD R0, y // R0 = y
 ADD R0, R0, z // R0 = R0 + z
 ST x, R0 // x = R0
 Ex 2:x = y – z
 LD R1, y // R1 = y
 LD R2, z // R2 = z
 SUB R1, R1, R2 // R1 = R1 - R2
 ST x, R1 // x = R1
 Ex 3: a = b + c
 d = a + e would be translated into
 LD R0, b // R0 = b
 ADD R0, R0, c // R0 = R0 + c
 ST a, R0 // a = R0
 LD R0, a // R0 = a
 ADD R0, R0, e // R0 = R0 + e
 ST d, R0 // d = R0
 The fourth statement is redundant since it loads a value that has just

been stored.
 The quality of the generated code is determined by its speed and size.

 If the target machine has an “increment”

instruction (INC),then Three address

statement a = a + 1 implemented

efficiently by the single instruction INC a.

 Ex 4:a=a+1

 LD R0, a // R0 = a

 ADD R0, R0, #1 // R0 = R0 + 1

 ST a, R0 // a = R0

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Suppose a is an array whose elements are 8-byte values, perhaps real numbers.
 Also assume elements of a are indexed starting at 0.
 Ex 5: b = a[i]
 LD R1, i // R1 = i
 MUL R1, R1, 8 // R1 = R1 * 8
 LD R2, a(R1) // R2 = contents(a + contents(R1))
 ST b, R2 // b = R2
 Ex 6: a[j] = c
 LD R1, c // R1 = c
 LD R2, j // R2 = j
 MUL R2, R2, 8 // R2 = R2 * 8
 ST a(R2), R1 // contents(a + contents(R2)) = R1
 Ex 7: x = *p
 LD R1, p // R1 = p
 LD R2, 0(R1) // R2 = contents(0 + contents(R1))
 ST x, R2 // x = R2
 Ex 8: *p = y
 LD R1, p // R1 = p
 LD R2, y // R2 = y
 ST 0(R1), R2 // contents(0 + contents(R1)) = R2

 Ex 9: if x < y goto L

 LD R1, x // R1 = x

 LD R2, y // R2 = y

 SUB R1, R1, R2 // R1 = R1 - R2

 BLTZ R1, L // if R1 < 0 jump to L

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

❖ Register and Address Descriptors

 In order to make decisions, we require a data structure that tells us what program

variables currently have their value in a register, and which register or registers, if so.

❖ 1. For each available register, a register descriptor keeps track of the variable names

whose current value is in that register.

 Initially, all register descriptors are empty. As the code generation progresses, each

register will hold the value of zero or more names.

❖ 2. For each program variable, an address descriptor keeps track of the location or

locations where the current value of that variable can be found.

 The location might be a register, a memory address, a stack location, or some set of more

than one of these.

 The information can be stored in the symbol-table entry for that variable name.

 Function getReg(I), which selects registers for each memory location associated with the

three-address instruction I .

 Function getReg has access to the register and address descriptors for all

the variables of the basic block, and also have access to certain data-flow

information such as the variables that are live on exit from the block.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 The rules for register descriptor and address descriptor are as follows:

➢ 1. For the instruction LD R, x

 (a) Change the register descriptor for register R so it holds only x.

 (b) Change the address descriptor for x by adding register R as an additional location.

➢ 2. For the instruction ST x, R, change the address descriptor for x to include its own

memory location.

➢ 3. For an operation such as ADD Rx, Ry, Rz implementing a three-address instruction

x = y + z

 (a) Change the register descriptor for Rx so that it holds only x.

 (b) Change the address descriptor for x so that its only location is Rx.

 Note that the memory location for x is not now in the address descriptor for x.

 (c) Remove Rx from the address descriptor of any variable other than x.

 4. When we process a copy statement x = y, after generating the load for y into

register Ry:

 (a) Add x to the register descriptor for Ry.

 (b) Change the address descriptor for x so that its only location is Ry.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Ex : Let us translate the basic block consisting of the three-address statements. t = a – b

 u = a – c

 v = t + u

 a = d

 d = v + u

 Here we assume that t, u, and v are temporaries, local to the block, while a, b , c,
and d are variables that are live on exit from the block.

 t = a - b Register Descriptor Address Descriptor

R1 R2 R3 a b c d t u v

a b c d

 LD R1, a

 LD R2, b

 SUB R2, R1, R2

a t a,R1 b c d R2 u = a – c
 LD R3, c
 SUB R1, R1, R3 u t c a b c,R3 d R2 R1
 v = t + u

 ADD R3, R2, R1
u t v a b c d R2 R1 R3

 a = d

 LD R2, d
u a,d v R2 b c d,R2 R1 R3

 d = v + u

 ADD R1, R3, R1
d a v R2 b c R1 R3 Exit

 ST a,R2
 St d,R1

d a v a,R2 b c d,R1 R3

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Design of the Function getReg

 Let x = y + z .First, we must pick a register for y and a register for z.

 The rules for picking register Ry are as follows:

1. If y is currently in a register, pick a register already containing y as Ry.

2. If y is not in a register, but there is a empty register ,pick one such register as Ry.

3. When y is not in a register, and there is no empty register . We need to pick one of the

allowable registers anyway, and we need to make it safe to reuse.

 Let R be a candidate register, and suppose v is one of the variables that the register descriptor

for R says is in R. The possibilities are:

a) If the address descriptor for v says that v is somewhere besides R , then we are OK.

b) If v is x, the variable being computed by instruction I , and x is not also one of the other

operands of instruction I ,then we are OK.

c) If v is not used later (that is, after the instruction I , there are no further uses of v, and if v is

live on exit from the block, then v is recomputed within the block),then we are OK.

d) If we are not OK by one of the first three cases, then we need to generate the store instruction

ST v, R to place a copy of v in its own memory location.

 This operation is called a spill.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Code Optimization
 Machine dependent optimizations:
 Machine dependent optimizations are based on register allocation and utilization of

special machine-instruction sequences.
 Peephole Optimization:
 A simple but effective technique for locally improving the target code is peephole

optimization.
 Which is done by examining a sliding window of target instructions (called the peephole)

and replacing instruction sequences within the peephole by a shorter or faster sequence..
 Peephole optimization can also be applied directly after intermediate code generation
 The peephole is a small, sliding window on a program.
 Characteristic of peephole optimizations:
1. Redundant-instruction elimination
2. Flow-of-control optimizations
3. Algebraic simplifications
4. Use of machine idiom
❖ Eliminating Redundant Loads and Stores
 If we see the instruction in sequence Load ,Store or Store & Load
 LD R0, a
 ST a, R0
 Redundant loads and stores of this nature code can be eliminated.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

❖ Eliminating Unreachable Code
 Another opportunity for peephole optimization is the removal of unreachable instructions.
 An unlabeled instruction immediately following an unconditional jump may be removed.
 Ex: if debug == 1 goto L1
 goto L2
 L1: print debugging information
 L2:
 One obvious peephole optimization is to eliminate jumps over jumps.
 Thus , no matter what the value of debug, the code sequence above can be replaced by
 if debug != 1 goto L2
 print debugging information
 L2:
 If debug is set to 0 at the beginning of the program, constant propagation would transform this

sequence into
 if 0 != 1 goto L2
 print debugging information
 L2:
 Now the argument of the first statement always evaluates to true, so the statement can be

replaced by goto L2.
 Then all statements that print debugging information are unreachable and

can be eliminated.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Flow-of-Control Optimizations
 Simple intermediate code produce jumps to jumps, jumps to conditional jumps, or conditional

jumps to jumps.
 These unnecessary jumps can be eliminated in either the intermediate code or the target code

by the following types of peephole optimizations.
 We can replace the sequence
 goto L1
 …
 L1: goto L2

 goto L2

 …..

 L1: goto L2

 If there are no jumps to L1, then it may be possible to eliminate the statement L1.

 if a < b goto L1

 …..

 L1: goto L2

 if a < b goto L2
 …..
 L1: goto L2

 Suppose there is a unconditional jump to L1 and L1 contain a conditional goto.

 goto L1

 . . .

 L1: if a < b goto L2

 L3:

 if a < b goto L2
 goto L3
 . . .
 L3

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Algebraic Simplification and Reduction in Strength:

 These algebraic identities can also be used by a peephole optimizer to eliminate three-address

statements such as

 x + 0 = 0 + x = x , x- 0 = x

 x * 1 = 1* x = x , x/1 = x in the peephole.

 Reduction in strength transformations can be applied in the peephole to replace expensive

operations by equivalent cheaper ones on the target machine.

 EXPENSIVE CHEAPER

 x2 = x * x

 2 * x = x + x

 x/2 = x* 0.5

 Fixed-point multiplication or division by a power of two is cheaper to implement as a shift.

 Use of Machine Idioms

 The target machine may have hardware instructions to implement specific operations

efficiently.

 For ex, some machines have auto-increment and auto-decrement addressing modes.

 These add or subtract one from an operand before or after using its value.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Loop Optimization

 The optimization which perform over the loop called as loop optimization .
 Loop Jamming , Loop Unrolling ,Code Motion
 Loop Jamming : Combining two or more loops in a single loop having same index

variable & number of iteration .
 Initial Code:
 1. for(int i=0; i<10; i++)
 {printf(“TOC”);}
 2. for(int i=0; i<10; i++)
 {printf(“CD”); }

 for(int i=0; i<10; i++)

 {printf(“TOC”);

 printf(“CD”);}

 Loop Unrolling : We basically remove or reduce iterations. Loop unrolling increases

the program’s speed by eliminating loop control instruction and loop test instructions.

 while (i<50)

 {printf(“TOC”);

 i++

 }

 while (i<50)
 {printf(“TOC”);
 i++
 printf(“TOC”);
 i++
 }

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Register Allocation by Graph Coloring Algorithm
 Register allocation is the process of determining which value should be placed into which

registers and at what times during execution of program.
 Graph coloring is a simple , systematic technique for allocating registers and managing

register spills.
 In the method, two passes are used.
 1st pass: target-machine instructions are selected as though there are an infinite number of

symbolic registers;
 In effect, names used in the intermediate code become names of registers and the three-

address instructions become machine-language instructions.
 Once the instructions have been selected, a second pass assigns physical registers to

symbolic ones.
 The goal is to find an assignment that minimizes the cost of spills.
 2nd pass: For each procedure a register-interference graph is constructed in which the

nodes are symbolic registers and an edge connects two nodes if one is live at a point
where the other is defined.

 Graph Coloring :A coloring of a graph is an assignment of colors to nodes, such that
nodes connected by an edge have different colors.

 A graph is k-colorable if it has a coloring with k colors
 colors = registers.
 We need to assign colors (registers) to graph nodes (temporaries)

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Symbolic registers or temporaries ={a,b,c,d,e,f}

a

b

c

d

e

f

 Nodes according to descending order of degree

 c,f,e,b,d,a=5,5,4,3,3,2

c

f

e

a

b

d

 4 colors required =4 register required

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Optimal Code Generation for Expression Tree
 We introduce a numbering scheme for the nodes of an expression tree (a syntax tree for an

expression) that allows us to generate optimal code for an expression tree.
 Ershov Numbers
 We begin by assigning to each node of an expression tree a number that tells how many

registers are needed to evaluate that node without storing any temporaries.
 These numbers are sometimes called Ershov numbers, after A. Ershov,who used a similar

scheme for machines with a single arithmetic register.
 For our machine model, the rules are:
1. Label all leaves 1.
2. The label of an interior node with one child is the label of its child.
3. The label of an interior node with two children is
a) The larger of the labels of its children, if those labels are different.
b) One plus the label of its children if the labels are the same.
 Ex :Expression tree for expression (a- b) + e ∗ (c + d) or the three-address code:
 t1 = a - b
 t2 = c + d
 t3 = e * t2
 t4 = t1 + t3

a b

-

c d

+e

*

+

1 1

1 1 1

2

2

2

3

 3 registers are required.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Generating Code From Labeled Expression Trees
 METHOD: The steps below are applied, starting at the root of the tree.

 If label k, then only k registers will be used. There is a “base” b ≥ 1 for the registers ,actual

registers used are Rb, Rb+1,….. Rb+k-1. The result always appears in Rb+k-1.

1. To generate machine code for an interior node with label k and two equal labels children:

a) Recursively generate code for the right child, using base b + 1. The result of the right child

appears in register Rb+k-1.

b) Recursively generate code for the left child, using base b; the result appears in Rb+k-2.

c) Generate the instruction OP Rb+k-1, Rb+k-2, Rb+k-1, OP is the operation for the interior node.

2. Suppose we have an interior node with label k and children with unequal labels. Then “big”

child, has label k, and “little” child, has some label m < k :

a) Recursively generate code for the big child, using base b; appears in register Rb+k-1.

b) Recursively generate code for the little child, using base b; appears in register Rb+m-1.

c) Generate the instruction OP Rb+k-1 ,Rb+m-1, Rb+k-1 or the instruction OP Rb+k-1, Rb+k-1, Rb+m-1,

depending on whether the big child is the right or left child, respectively.

3. For a leaf representing operand x, if the base is b generate the instruction

LD Rb, x.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Ex : Since the label of the root is 3, the result will appear in R3, and only

R1, R2, and R3 will be used. The base for the root is b = 1.

 Since the root has children of equal labels, right child first, When we

generate code for the right child of the root, we find the big child is the

right child and the little child is the left child.

 We thus generate code for the right child first, with b = 2.

 LD R3, d

 LD R2, c

 ADD R3, R2, R3

 LD R2, e

 MUL R3, R2, R3

 For the left child of the root , base 1.

 LD R2, b

 LD R1, a

 SUB R2, R1, R2

 ADD R3, R2, R3

 interior node
 =
 Right child , base=b+1,Rb+k-1

 Left child , base=b,Rb+k-2

 OP Rb+k-1, Rb+k-2, Rb+k-1

 ≠
 Big child, base=b, Rb+k-1

 little child, base b, Rb+m-1

 OP Rb+k-1 ,Rb+m-1, Rb+k-1 or
OP Rb+k-1, Rb+k-1, Rb+m-1,

 leaf LD Rb, x.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Run-Time Environments
 The compiler creates and manages a run-time environment in which it assumes its target

programs are being executed.
 This environment deals with a variety of issues such as
1. The layout and allocation of storage locations for the objects named in the source

program,
2. The mechanisms used by the target program to access variables,
3. The linkages between procedures,
4. The mechanisms for passing parameters,
5. The interfaces to the operating system, input/output devices, and other programs.
 Storage Organization:
 The executing target program runs in its own logical address space in which each

program value has a location.
 The management and organization of this logical address space is shared between the

compiler, operating system, and target machine.
 The operating system maps the logical addresses into physical addresses, which are

usually spread throughout memory.
 The run-time storage comes in blocks of contiguous bytes, where a byte is

the smallest unit of addressable memory.
 A byte is eight bits and four bytes form a machine word . Multibyte objects

are stored in consecutive bytes and given the address of the first byte.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 The amount of storage needed for a name is determined from its type.
 A character array of length 10 needs only enough bytes to hold ten

characters, a compiler may allocate 12 bytes to get the proper alignment ,
leaving 2 bytes unused.

 Space left unused due to alignment considerations is referred to as padding.
 When space is premium, a compiler may pack data so that no padding is left.
 Subdivision of run-time memory into code and data areas→

➢ Code :The size of the target code is fixed at compile time, so the compiler
can place the executable target code in a statically determined area Code.

➢ Static: The size of some program data objects, such as global constants, and data
generated by the compiler, such as information to support garbage collection, may be
known at compile time, and these data objects can be placed in another statically
determined area called Static.

➢ Stack & Heap :To maximize the utilization of space at run time, the other two areas,
Stack and Heap, are at the opposite ends of the remainder of the address space.

 These areas are dynamic; their size can change as the program executes.
 These areas grow towards each other as needed.
 The stack is used to store data structures called activation records that get

generated during procedure calls.
 The stack grows towards lower addresses, the heap towards higher.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Many programming languages allow the programmer to allocate and deallocate data
under program control.

 For example, C has the functions malloc and free that can be used to obtain and give back
arbitrary chunks of storage. The heap is used to manage this kind of long-lived data.

 Static Versus Dynamic Storage Allocation:
 Static and dynamic distinguish between compile time and run time, respectively.
 A storage-allocation decision is static, if it can be made by the compiler looking only at

the text of the program, not at what the program does when it executes.
 A decision is dynamic if it can be decided only while the program is running.
 Many compilers use some combination of Stack storage, Heap storage for dynamic

storage allocation.
 To support heap management, “garbage collection” enables the run-time system to detect

useless data elements and reuse their storage.
 Automatic garbage collection is an essential feature of many modern languages.
 Stack Allocation of Space:
 Almost all languages use procedures, functions, or methods.
 Each time a procedure is called, space for its local variables is pushed onto a stack, and

when the procedure terminates, that space is popped off the stack.
 Activation Trees
 Stack allocation would not be feasible if procedure calls, or activations

of procedures, did not nest in time.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 We can represent the activations of procedures during the running of an entire
program by a tree, called an activation tree.

 Each node corresponds to one activation, and the root is the activation of the “main”
procedure that initiates execution of the program.

 At a node for an activation of procedure p,the children correspond to activations of
the procedures called by this activation of p.

 We show these activations in the order that they are called, from left to right.
 If an activation of procedure p calls procedure q, then that activation of q must end

before the activation of p can end.
 The use of a run-time stack is enabled by several useful relationships between the

activation tree and the behavior of the program:
 1. The sequence of procedure calls corresponds to a preorder traversal of the

activation tree.
 2. The sequence of returns corresponds to a postorder traversal of the activation tree.
 3. Suppose that control lies within a particular activation of some procedure ,

corresponding to a node N of the activation tree.
 Then the activations that are currently open (live) are node N and its ancestors.
 The order in which these activations were called is the order in which

they appear along the path to N , starting at the root, and they will
return in the reverse of that order.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Ex 1: Construct Activation tree for Quick sort Program
 Possible activations for the program
 enter main()
 enter readArray()..leave readArray()
 enter quicksort(1,9)
 enter partition(1,9)..leave partition(1,9)
 enter quicksort(1,3)
 ...leave quicksort(1,3)
 enter quicksort(5,9)
 …leave quicksort(5,9)
 leave quicksort(1,9)
 leave main() main

r q(1,9)

p(1,9) q(1,3) q(5,9)

p(1,3) q(1,0) q(2,3)

p(2,3)
q(2,1)

q(3,3)

p(5,9) q(5,5) q(7,9)

p(7,9) q(7,7) q(9,9)

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Ex 2:Activation tree for f(5)
 int f(int n)
 {
 if (n==0)
 return 0;
 if (n==1)
 return 1;
 else
 return f(n-1)+f(n-2);
 }

f(5)

f(4)
+

f(3)

f(3)
+

f(2)

f(2)
+

f(1)

f(1)
+

f(0)
1 0

1 1

2

f(1)
+ f(0)

1 0

1

3

f(2)
+

f(1)

f(1)
+

f(0)
1 0

1
1

2

5

 0,1,1,2,3,5. f(5)=5

 Activation Records

 Procedure calls and returns are usually managed by a run-time stack called the

control stack.

 Each live activation has an activation record (frame) on the control stack, with the

root of the activation tree at the bottom , and the entire sequence of activation

records on the stack corresponding to the path in the activation tree to

the activation where control currently resides.

 The latter activation has its record at the top of the stack.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 A general activation record →

 1. Temporary values, such as those arising from the evaluation of

expressions, in cases where those temporaries cannot be held in registers.

 2. Local data belonging to the procedure whose activation record this is.

 3. A saved machine status, with information about the state of the machine

just before the call to the procedure.

 This information typically includes the return address and the contents of

registers that were used by the calling procedure and that must be restored

when the return occurs.

 4. An access link may be needed to locate data needed by the called procedure but found

elsewhere, e.g., in another activation record.

 5. A control link, pointing to the activation record of the caller.

 6. Space for the return value of the called function, if any. Not all called procedures return a

value, and if one does, we may prefer to place that value in a register for efficiency.

 7. The actual parameters used by the calling procedure.

 Commonly, these values are not placed in the activation record but rather

in registers for greater efficiency.

 However, we show a space for them to be completely general.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Activation records for Quick sort

main

r q(1,9)

p(1,9) q(1,3) q(5,9)

p(1,3) q(1,0) q(2,3)

p(2,3)
q(2,1)

q(3,3)

p(5,9) q(5,5) q(7,9)

p(7,9) q(7,7) q(9,9)

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Calling Sequences

 Procedure calls are implemented by what are known as calling sequences, which consists of

code that allocates an activation record on the stack and enters information into its fields.

 A return sequence is similar code to restore the state of the machine so the calling procedure

can continue its execution after the call.

 The code in a calling sequence is often divided between the calling procedure (the “caller”)

and the procedure it calls (the “callee”).

 Access to Nonlocal Data on the Stack

 In the C family of languages, all variables are defined either within a single function or

outside any function (“globally”).

 A global variable v has a scope consisting of all the functions that follow the declaration of v,

except where there is a local definition of the identifier v.

 Variables declared within a function have a scope consisting of that function only, or part of it,

if the function has nested blocks.

 Allocation of storage for variables and access to those variables is simple:

 1. Global variables are allocated static storage.

 The locations of these variables remain fixed and are known at compile time.

 So to access any not local variable we use the statically determined address.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 2. Any other name must be local to the activation at the top of the stack.

 We may access these variables through the top_sp pointer of the stack.

 An important benefit of static allocation for global is that declared procedures may be passed

as parameters or returned as results , with no substantial change in the data-access strategy.

 The scope of a declaration of x is the region of the program in which uses of x refer to

this declaration.

 A language uses static scope or lexical scope if it is possible to determine the scope of a

declaration by looking only at the program.

 Otherwise , the language uses dynamic scope.

 With dynamic scope, as the program runs , the same use of x could refer to any of several

different declarations of x.

 Most languages, such as C and Java, use static scope.

 Nesting Depth

 Let us give nesting depth 1 to procedures that are not nested within any other procedure.

 For example, all C functions are at nesting depth 1.

 However, if a procedure p is defined immediately within a procedure at

nesting depth i, then give p the nesting depth i + 1

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Access Links

 A direct implementation of the normal static scope rule for nested functions is obtained by

adding a pointer called the access link to each activation record.

 If procedure p is nested immediately within procedure q in the source code, then the access

link in any activation of p points to the most recent activation of q.

 Note that the nesting depth of q must be exactly one less than the nesting depth of p.

 Access links form a chain from the activation record at the top of the stack to a sequence of

activations at progressively lower nesting depths.

 Along this chain are all the activations whose data and procedures are accessible to the

currently executing procedure.

 Suppose that the procedure p at the top of the stack is at nesting depth np, and p needs to

access x, which is an element defined within some procedure q that surrounds p and has

nesting depth nq.

 nq≤ np, with equality only if p and q are the same procedure.

 To find x, we start at the activation record for p at the top of the stack and follow the access

link np- nq times , from activation record to activation record.

 Since the compiler knows the layout of activation records, x will be found

at some fixed offset from the position in q's activation record.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 A version of quicksort, in ML style, using nested functions

 a: After sort has called readArray to load input into the array a and then called

quicksort (1, 9).
 b: A recursive call to quicksort(1, 3),followed by a call to partition, which

calls exchange.
 d: The access link for exchange bypasses the activation records

for quicksort and partition, since exchange is nested immediately within sort.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 The heap is the portion of the store that is used for data that lives indefinitely, or until
the program explicitly deletes it.

 Local variables typically become inaccessible when their procedures end.
 The Memory Manager:
 Memory manager allocates and deallocates space within the heap;
 It serves as an interface between application programs and the operating system.
 The memory manager keeps track of all the free space in heap storage at all times.
 It performs two basic functions:
 Allocation. When a program requests memory for a variable or object , the memory

manager produces a chunk of contiguous heap memory of the requested size.
 If possible, it satisfies an allocation request using free space in the heap;
 If no chunk of the needed size is available, it seeks to increase the heap storage space

by getting consecutive bytes of virtual memory from the operating system.
 Deallocation. The memory manager returns deallocated space to the pool of free

space, so it can reuse the space to satisfy other allocation requests.
 Here are the properties we desire of memory managers:
 Space Efficiency. A memory manager should minimize the total

heap space needed by a program.
 Space efficiency is achieved by minimizing “fragmentation”.

Heap Management

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Program Efficiency. A memory manager should make good use of the memory
subsystem to allow programs to run faster.

 Low Overhead. Because memory allocations and deallocations are frequent
operations in many programs, it is important that these operations be as efficient as
possible.

 That is, we wish to minimize the overhead the fraction of execution time spent
performing allocation and deallocation.

 Reducing Fragmentation
 At the beginning of program execution, the heap is one contiguous unit of free space.
 As the program allocates and deallocates memory, this space is broken up into free

and used chunks of memory, and the free chunks need not reside in a contiguous area
of the heap.

 We refer to the free chunks of memory as holes.
 Garbage Collection
 Data that cannot be referenced is known as garbage.
 Many high-level programming languages remove the burden of

manual memory management from the programmer by offering
automatic garbage collection, which deallocates unreachable data.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Intermediate-Code Generation
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Three-Address Code
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Static Single-Assignment Form
	Slide 31: Control Flow Graphs
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Next-Use Information
	Slide 37: Code Optimization
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48: 2.Copy Propagation
	Slide 49
	Slide 50: 5.Induction Variables and Reduction in Strength
	Slide 51
	Slide 52: Data-Flow Analysis
	Slide 53
	Slide 54: The Data-Flow Analysis Schema
	Slide 55
	Slide 56: Reaching Definitions
	Slide 57
	Slide 58
	Slide 59
	Slide 60: Live-Variable Analysis
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65: Available Expressions
	Slide 66: Code Generation
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76: Code Optimization
	Slide 77
	Slide 78
	Slide 79
	Slide 80: Loop Optimization
	Slide 81
	Slide 82
	Slide 83: Optimal Code Generation for Expression Tree
	Slide 84: Generating Code From Labeled Expression Trees
	Slide 85
	Slide 86: Run-Time Environments
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99

