
Compiler Design

Chapter 3:SDT,RTE

GATE CS PYQ

 by Monalisa
M

on
ali

sa
CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2010,Q14: Which languages necessarily need heap allocation in the

runtime environment?

 (A) Those that support recursion

(B) Those that use dynamic scoping

(C) Those that allow dynamic data structures

(D) Those that use global variables

 (A) Those that support recursion need Stack allocation

 (B) The scope of a declaration of x is the region of the program in which uses of x

refer to this declaration.

 With dynamic scope, as the program runs , the same use of x could refer to any of

several different declarations of x.

 (C)Heap allocation is needed for dynamic data structures like tree, linked list, etc.

So the languages which allow dynamic data structure require heap allocation at

runtime.

 (D) Those that use global variables need static allocation.

 Ans : (C) Those that allow dynamic data structures

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2010,Q37: The program below uses six

temporary variables a, b, c, d, e, f.

 a = 1

 b = 10

 c = 20

 d = a+b

 e = c+d

 f = c+e

 b = c+e

 e = b+f

 d = 5+e

 return d+f

 Assuming that all operations take their operands from

registers, what is the minimum number of registers

needed to execute this program without spilling?

 (A) 2 (B) 3 (C) 4 (D) 6

 LD R1,a //R1=a=1

 LD R2,b //R2=b=10

 LD R3,c //R3=c=20

 ADD R1,R1,R2 //R1=R1+R2

 ADD R1,R3,R1 //R1=R3+R1

 ADD R2,R3,R1 //R2=R3+R1

 ADD R2,R3,R1 //R2=R3+R1

 ADD R1,R2,R2 //R1=R2+R2

 ADD R3,#5,R1 //R3=5+R1

 ST d,R3

 ST f,R2

 Minimum 3 registers needed.

 Ans: (B) 3

a b

+c

+

d

e

+ f,b

+ e5

+ d

+

1 1

1

1

2

2

2

3

3

3

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2011,Q36: Consider evaluating the following expression tree on a machine with

load-store architecture in which memory can be accessed only through load and store

instructions. The variables a, b, c, d and e initially stored in memory. The binary operators

used in this expression tree can be evaluate by the machine only when the operands are in

registers. The instructions produce results only in a register. If no intermediate results can be

stored in memory, what is the minimum number of registers needed to evaluate this

expression?

 (A) 2

(B) 9

(C) 5

(D) 3

1 1 1

1 1

2

22

3

 Ans: (D) 3

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2012,Q36: Consider the program given below, in a block-structured pseudo-language
with lexical scoping and nesting of procedures permitted.

 Program main;
 Var ...
 Procedure A1;
 Var ...
 Call A2;
 End A1
 Procedure A2;
 Var ...
 Procedure A21;
 Var ...
 Call A1;
 End A21
 Call A21;
 End A2
 Call A1;
End main.

 Consider the calling chain: Main → A1 → A2 → A21 → A1
 The correct set of activation records along with their access links is given by

 A1,A2 are defined

under Main.

 So A1,A2 Access

link are pointed to

main.

 A21 is defined under

A2 hence its Access

link will point to A2 .

 Ans: (D)

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2013,Q48: Common Data for Questions 48 and 49: The following code segment

is executed on a processor which allows only register operands in its instructions. Each

instruction can have atmost two source operands and one destination operand. Assume

that all variables are dead after this code segment.

 c = a + b;

 d = c * a;

 e = c + a;

 x = c * c;

 if (x > a) { y = a * a;}

 else { d = d * d;

 e = e * e;}

 Q.48: Suppose the instruction set architecture of the processor has only two registers. The only

allowed compiler optimization is code motion, which moves statements from one place to

another while preserving correctness. What is the minimum number of spills to memory in the

compiled code?

 (A) 0 (B) 1 (C) 2 (D) 3

 c = a + b; ADD R2 ,R1,R2 ;

 x = c * c; MUL R2,R2,R2 spill c

 if (x > a)

 { y = a * a; } MUL R2,R1,R1;

 else { d = c * a; MUL R2,R2,R1;

 d = d * d; MUL R2,R2,R2;

 e = c + a; ADD R2,R2,R1 ;

 e = e * e; } MUL R2,R2,R2;

 Total number of spills to memory is 1 .only c

 Ans: (B) 1

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2013,Q49:Common Data for Questions 48 and 49: The following code segment

is executed on a processor which allows only register operands in its instructions. Each

instruction can have atmost two source operands and one destination operand. Assume

that all variables are dead after this code segment.

 c = a + b;

 d = c * a;

 e = c + a;

 x = c * c;

 if (x > a) { y = a * a;}

 else { d = d * d;

 e = e * e;}

 Q.49 What is the minimum number of registers needed in the instruction set architecture of the

processor to compile this code segment without any spill to memory? Do not apply any

optimization other than optimizing register allocation.

(A) 3 (B) 4 (C) 5 (D) 6

 c = a + b; ADD R2 ,R1,R2 ;

 d = c * a; MUL R3 ,R2,R1;

 e = c + a; ADD R4 ,R2,R1;

 x = c * c; MUL R2 ,R2,R2

 if (x > a)

 { y = a * a; } MUL R1,R1,R1;

 else {d = d * d; MUL R3,R3,R3;

 e = e * e; } MUL R4, R4, R4;

 Minimum number of registers 4.

 Ans: (B) 4

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2014 Set-1,Q17: Which one of the following is FALSE?

(A) A basic block is a sequence of instructions where control enters the sequence at the

beginning and exits at the end.

(B) Available expression analysis can be used for common subexpression elimination.

(C) Live variable analysis can be used for dead code elimination.

(D) x=4*5⇒x=20 is an example of common subexpression elimination.

 (A)True

 (B)True, The primary use of available-expression information is for detecting global common

subexpressions.

 (C) True, Live variable analysis can be used for dead code elimination and register

allocation.

 (D)False , x=4* 5 ⇒ x=20 is an example of Constant folding not common subexpression

elimination

 Ans:(D) x=4*5⇒x=20 is an example of common subexpression elimination.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2014 Set-2,Q18: Which one of the following is NOT performed during

compilation?

 (A) Dynamic memory allocation

(B) Type checking

(C) Symbol table management

(D) Inline expansion

 (A) Dynamic memory allocation is not performed during compilation, it occurs at

run time only.

 (B) Type checking performed during completion semantic analysis phase.

 (C) Symbol table management performed during compilation .

 (D) Inline expansion is compiler optimization that replaces a call to a function with

the body of that function . Performed during compilation.

 Ans: (A) Dynamic memory allocation

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2014 Set-2,Q34:For a C program accessing X[i][j][k], the following intermediate

code is generated by a compiler. Assume that the size of an integer is 32 bits and the size of a

character is 8 bits.

 t0 = i ∗ 1024

 t1 = j ∗ 32

 t2 = k ∗ 4

 t3 = t1 + t0

 t4 = t3 + t2

 t5 = X[t4]

 Which one of the following statements about the source code for the C program is

CORRECT?

 (A) X is declared as “int X[32][32][8]”.

 (B) X is declared as “int X[4][1024][32]”.

 (C) X is declared as “char X[4][32][8]”.

 (D) X is declared as “char X[32][16][2]”.

 Let a[r][c][b],Row major order

 Loc a[i][j][k]= [i ×c ×b +j ×b+k] ×w if base is 0.

 t5 = X[t4]

 =X[t3 + t2]

 =X[t1 + t0 + k ∗ 4]

 =X[j ∗ 32 + i ∗ 1024 + k ∗ 4]

 =X[i ∗1024 +j∗32+k∗4]

 =X[i ∗ 256+j ∗ 8+ k]*4

 =X[i ∗32*8+j∗8+k]*4

 w=4 ,b=8,c=32

 int X[][32][8]

 Ans: (A) “int X[32][32][8]”.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2014 Set-3,Q11: The minimum number of arithmetic operations required to

evaluate the polynomial P(X)=X5+4X3+6X+5 for a given value of X, using only one

temporary variable is ______.

 P(X)=x5+4x3+6x+5

 =x(x4+4x2+6)+5

 =x(x(x3+4x)+6)+5

 =x(x(x(x2+4))+6)+5

 =x(x(x(x(x)+4))+6)+5

 1. t = x * x [x2]

 2. t = t + 4 [x2 + 4]

 3. t = t *x [x3+4x]

 4. t = t * x [x4+4x2]

 5. t = t + 6 [x4+4x2+6]

 6. t = t * x [x5+4x3+6x]

 7. t = t + 5 [x5+4x3+6x+5]

 Minimum number of arithmetic operations 7

 Ans : 7

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2014 Set-3,Q17:One of the purposes of using intermediate code in

compilers is to

(A) make parsing and semantic analysis simpler.

(B) improve error recovery and error reporting.

(C) increase the chances of reusing the machine-independent code optimizer in other

compilers.

(D) improve the register allocation.

 (A) Intermediate code is after syntax analysis & semantic analysis . False

 (B) Error recovery & reporting done by all phases of compiler . False

 (C) The intermediate code is independent of machine. By converting source code to

intermediate code a machine independent code optimizer may be written. Thus

increase the chances of reusing the machine-independent code optimizer in other

compilers . True

 (D) Register allocation is done in code generation phase . False

 Ans : (C)

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2014 Set-3,Q18:Which of the following statements are CORRECT?

 1) Static allocation of all data areas by a compiler makes it impossible to implement

recursion.

 2) Automatic garbage collection is essential to implement recursion.

 3) Dynamic allocation of activation records is essential to implement recursion.

 4) Both heap and stack are essential to implement recursion.

 (A) 1 and 2 only (B) 2 and 3 only (C) 3 and 4 only (D) 1 and 3 only

 1) Static allocation of all data areas by a compiler makes it impossible to implement

recursion is true, as recursion requires memory allocation at run time, so it requires

dynamic allocation of memory.

 2) Automatic garbage collection is essential to implement heap not stack .

 3) Dynamic allocation of activation records is essential to implement recursion .

 4) Stack is essential to implement recursion not heap.

 Ans : (D) 1 and 3 only

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2014 Set-3,Q34:Consider the basic block given below.

 a = b + c

 c = a + d

 d = b + c

 e = d - b

 a = e + b

 The minimum number of nodes and edges present in the DAG representation of the above

basic block respectively are

 (A) 6 and 6 (B) 8 and 10 (C) 9 and 12 (D) 4 and 4

 a = b + c

 c = a + d

 d = b + c

 e = d - b = b + c - b = c

 a = d - b + b = d

 DAG representation of above basic block→

 Minimum number of nodes = 6 & edges = 6

 Ans : (A) 6 and 6

+ a

cb

d

+ c

+ d

,e

,a

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2015 Set-1,Q50:A variable x is said to be live at a statement Si in a

program if the following three conditions hold simultaneously:

 I. There exists a statement Sj that uses x

 II. There is a path from Si to Sj in the flow graph corresponding to the program

 III. The path has no intervening assignment to x including at Si and Sj

 The variables which are live both at the statement in basic block 2 and at the

statement in basic block 3 of the above control flow graph are

(A) p, s, u (B) r, s, u (C) r, u (D) q, v

 (A) p is live at block 1 1st-2nd stmt. Dead in block 2,3,4

 s is live in block 1 2nd -3rd stmt & block 3 .Dead in block 2,4.

 u is live in block 1 3rd stmt, block 2 & block 3 .Dead in block 4

 (B) r is live in Block 1,2,3,4

 (C) r is live at block 1,2,3,4 & u is live at block 2, 3.

 r , u both live at block 2& 3.

 (D) q is live in block 4,1 . v is live in block 2,4,1,3.

 Ans : (C) r, u

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 OUT[B] =𝑈𝑆 𝑎 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 𝑜𝑓 𝐵 IN[S]

 IN[B] = useB 𝑈 (OUT[B] - defB)

 use1 ={q,r,v}, def1={p,s,u}

 use2 ={r,u}, def2 ={v}

 use3 ={s,u}, def3 ={q}

 use4={r,v}, def4 ={q}

 OUT[4] = IN[1] = {q,r,v}

 IN [4]={r,v}𝑈[{q,r,v}-{q}]={r,v}

 OUT[3] = IN[4] = {r,v}

 IN [3]={s,u}𝑈[{r,v}-{q}]={r,s,u,v}

 OUT[2] = IN[4]={r,v}

 IN [2]={r,u}𝑈[{r,v}-{v}]={r,u}

 OUT[1] = IN[2] 𝑈IN[3]={r,u}𝑈{r,s,u,v}={r,s,u,v}

 IN [1]={q,r,v}𝑈[{r,s,u,v}-{p,s,u}]={q,r,v}

 The variables which are live both in basic block 2 and 3 are {r,u}

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2015 Set-1,Q55:The least number of temporary variables required to

create a three-address code in static single assignment form for the expression

 q + r / 3 + s – t * 5 + u * v / w is ____.

 t1=r/3;

 t2=t∗5;

 t3=u∗v;

 t4=t3/w;

 t5=q+t1;

 t6=t5+s;

 t7=t6−t2;

 t8=t7+t4;

 We need 8 temporary variables.

 Without SSA form we need 3 temporary variable .

 Ans : 8

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2015 Set-2,Q14:In the context of abstract-syntax-tree (AST) and control-

flow-graph (CFG), which one of the following is True?

 (A) In both AST and CFG, let node N2 be the successor of node N1. In the input

program, the code corresponding to N2 is present after the code corresponding to N1

(B) For any input program, neither AST nor CFG will contain a cycle

(C) The maximum number of successors of a node in an AST and a CFG depends on

the input program

(D) Each node in AST and CFG corresponds to at most one statement in the input

program

 (A) In CFG,code of N2 may be present before N1 when there is a loop or jump . False

 (B) CFG contains cycle when input program has loop . False

 (C) Successors in AST and CFG depend on input program. True

 (D) In CFG a single node may contain more than one statements . False

 Ans : C

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2015 Set-2,Q29:

 Consider the intermediate code given below:

 1. i = 1

 2. j = 1

 3. t1 = 5 * i

 4. t2 = t1 + j

 5. t3 = 4 * t2

 6. t4 = t3

 7. a[t4] = –1

 8. j = j + 1

 9. if j <= 5 goto(3)

 10. i = i + 1

 11. if i < 5 goto(2)

 The number of nodes and edges in the control-flow-graph

constructed for the above code, respectively, are

 (A) 5 and 7 (B) 6 and 7

 (C) 5 and 5 (D) 7 and 8

 Leader 1,2,3,10

 #nodes=6

 #edges=7

 Ans: (B) 6 and 7

Entry

1. i = 1

2. j = 1

3. t1 = 5 * i

4. t2 = t1 + j

5. t3 = 4 * t2

6. t4 = t3

7. a[t4] = –1

8. j = j + 1

9. if j<= 5 goto B3

10. i = i + 1

11. if i < 5 goto B2

Exit

B1

B2

B3

B4

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2016 Set-1,Q19:Consider the following code segment.

x = u - t;

y = x * v;

x = y + w;

y = t - z;

y = x * y;

The minimum number of total variables required to convert the above code segment to static

single assignment form is_______ .

 Static Single Assignment form (SSA) of the given code segment is:

 x1 = u - t;

 y1 = x1 * v;

 x2 = y1 + w;

 y2 = t - z;

 y3 = x2 * y2;

 Total Variables={x1, x2, y1, y2, y3, t, u, v, w, z}

 # total variable = 10

 Ans : 10

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2016 Set-1,Q46: Consider the following Syntax Directed Translation

Scheme (SDTS), with non-terminals {S, A} and terminals {a, b}.

S → aA { print 1 }

S → a { print 2 }

A → Sb { print 3 }

Using the above SDTS, the output printed by a bottom-up parser, for the input aab

is:(A) 1 3 2 (B) 2 2 3 (C) 2 3 1 (D) syntax error

 S-attributed SDT

 Attributes are evaluated bottom up , post order traversal.

S

a A

S b

a

printf 2

printf 3

printf 1

 Ans : (C) 2 3 1

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2016 Set-2,Q19: Match the following:

 (A) P i, Q ii, R iv, S iii (B) P iii, Q i, R ii, S iv

 (C) P ii, Q iii, R i, S iv (D) P iv, Q i, R ii, S iii

 (P) Lexical analysis uses (iii)Regular expressions

 (Q) Top down parsing uses (i)left most derivation.

 (R) Semantic analysis used for (ii) Type checking.

 (S) Runtime environments load (iv)Activation records into stack.

 Ans : (B) P iii, Q i, R ii, S iv

(P) Lexical analysis

(Q) Top down parsing

(R) Semantic analysis

(S) Runtime environments

(i) Leftmost derivation

(ii)Type checking

(iii)Regular expressions

(iv) Activation records

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2017 Set-1,Q12: Consider the following intermediate program in three

address code

 p = a - b

 q = p * c

 p = u * v

 q = p + q

 Which one of the following corresponds to a static single assignment form of the

above code?

 SSA form of the given code:

 p1 = a-b

 q1 = p1 * c

 p2 = u * v

 q2 = p2 + q1

 Ans: B

(A)

p1 = a - b

q1 = p1 * c

p1 = u * v

q1 = p1+q1

(B)

p3 = a - b

q4 = p3* c

p4 = u * v

q5 = p4+q4

(C)

p1 = a - b

q1 = p2* c

p3= u * v

q2 = p4 + q3

(D)

p1= a - b

q1 = p * c

p2 = u * v

q2 = p + q M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2017 Set-1,Q43: Consider the following grammar:

 stmt → if expr then expr else expr; stmt | ε

 expr → term relop term | term

 term → id | number

 id → a | b | c

 number → [0-9]

 where relop is a relational operator (e.g., <, >, ….), ε refers to the empty statement, and if

,then, else are terminals.

 Consider a program P following the above grammar containing ten if terminals. The number

of control flows paths in P is _______. For example, the program if e1 then e2 else e3

 has 2 control flow paths, e1 → e2 and e1 → e3.

 Every if statement has 2 control flows as given in question.Hence,

 2 control flow for 1st ‘if’

 2 control flow for 2nd ‘if’….

 2 control flow for 10th ‘if’

 Total control flow path=2 × 2 × 2 × 10 times = 210 = 1024

 Ans: 1024

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2017 Set-1,Q52: Consider the expression (a-1) * (((b + c) / 3) + d). Let

X be the minimum number of registers required by an optimal code generation

(without any register spill) algorithm for a load/store architecture, in which (i) only

load and store instructions can have memory operands and (ii) arithmetic

instructions can have only register or immediate operands .The value of X is _____.

b c

+

1
/

3

+

da 1

-

*

1 1

1

2

2

2
1

2

 LD R1,b

 LD R2,c

 ADD R1, R1, R2

 DIV R1,R1,#3

 LD R2,d

 ADD R1, R1, R2

 LD R2,a

 SUB R2,R2,#1

 MUL R1, R2, R1

 X=2

 Ans : 2

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2019,Q36: Consider the following grammar and the semantic actions to support the

inherited type declaration attributes. Let X1, X2, X3, X4, X5 and X6 be the placeholders for the

non-terminals D, T, L or L1 in the following table:

 Which one of the following are the appropriate choices for X1, X2, X3 and X4?

 (A) X1 = L, X2 = T, X3 = L1, X4 = L

 (B) X1 = T, X2 = L, X3 = L1, X4 = T

 (C) X1 = L, X2 = L, X3 = L1, X4 = T

 (D) X1 = T, X2 = L, X3 = T, X4 = L1

 Inherited type declaration attributes

 D→ TL {X1.type=X2.type}

 L.type=T.type

 X1=L,X2=T

 L → L1, id {X3.type = X4.type }

 L data type inherited from T .

 Now L data type will pass to its children as type is inherited attribute

 L1.type=L.type

 X3= L1,X4=L

 Ans : (A) X1 = L, X2 = T, X3 = L1, X4 = L

Production rule Semantic action

D→ TL X1.type=X2.type

T→int T.type=int

T→float T.type=float

L→L1,id X3.type=X4.type

addType(id.entry,X5.type)

L→id addType(id.entry,X6.type)

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2020,Q33:Consider the productions A → PQ and A → XY. Each of the five non-

terminals A,P,Q,X, and Y has two attributes: s is a synthesized attribute, and i is an inherited

attribute. Consider the following rules.

 Rule 1: P.i=A.i+2, Q.i=P.i+A.i, and A.s=P.s+Q.s

 Rule 2: X.i=A.i+Y.s and Y.i=X.s+A.i

 Which one of the following is TRUE ?

 (A) Both Rule 1 and Rule 2 are L-attributed (B) Only Rule 1 is L-attributed

(C) Only Rule 2 is L-attributed (D) Neither Rule 1 nor Rule 2 is L-attributed

 A → PQ

 P.i=A.i+2, P.i inherited from it’s parent A.i .

 Q.i=P.i+A.i , Q.i inherited from it’s parent A.i & left sibling P.i .

 A.s=P.s+Q.s ,A.s is synthesized from both childs.

 Rule 1 is L-attributed

 A → XY

 X.i=A.i+Y.s , X.i inherited from it’s parent A.i & right sibling Y.s . [not L-attributed]

 Y.i=X.s+A.i , Y.i inherited from it’s parent A.i & left sibling X.s

 Rule 2 is not L-attributed

 Ans: (B) Only Rule 1 is L-attributed

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2021,Set-1,Q4: Consider the following statements.

 S1: The sequence of procedure calls corresponds to a preorder traversal of the activation tree.

 S2: The sequence of procedure returns corresponds to a postorder traversal of the activation

tree.

 Which one of the following options is correct?

 (A) S1 is true and S2 is false (B) S1 is false and S2 is true

 (C) S1 is true and S2 is true (C) S1 is false and S2 is false

 We can represent the activations of procedures during the running of an entire program by a

tree, called an activation tree.

 S1: activation tree preorder traversal is same as sequence of procedure calls ,True.

 S2: activation tree postorder traversal is same as sequence of procedure returns ,True.

 Ans : (C) S1 is true and S2 is true
M

on
ali

sa
CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2021,Set-1,Q26:Consider the following grammar (that admits a series of

declarations, followed by expressions) and the associated syntax directed translation (SDT)

actions, given as pseudo-code:

 P→ D*E*

 D→ int ID{record that ID.lexeme is of type int}

 D→ bool ID{record that ID.lexeme is of type bool}

 E→ E1+E2{check that E1.type=E2.type=int;set E.type :=int}

 E→ !E1{check that E1.type=bool; set E.type:=bool}

 E→ ID{set E.type :=int}

 With respect to the above grammar, which one of the following choices is correct?

 (A) The actions can be used to correctly type-check any syntactically correct program

 (B) The actions can be used to type-check syntactically correct integer variable declarations

and integer expressions

 (C) The actions can be used to type-check syntactically correct boolean variable declarations

and boolean expressions.

 (D) The actions will lead to an infinite loop

 Ans :(B) The actions can be used to type-check syntactically correct

integer variable declarations and integer expressions

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2021,Set-1,Q50: Consider the following C code segment:
 a = b + c;
 e = a + 1;
 d = b + c;
 f = d + 1;
 g = e + f;
 In a compiler, this code segment is represented internally as a directed acyclic

graph (DAG). The number of nodes in the DAG is _____________

+ a

cb

1

+ e

,d

,f

+
g

 Number of nodes=6

 Ans: 6

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2021,Set-2,Q13:In the context of compilers, which of the following
is/are NOT an intermediate representation of the source program?

 (A) Three address code

 (B) Abstract Syntax Tree (AST)

 (C) Control Flow Graph (CFG)

 (D) Symbol table

 Intermediate code can be represented in following way:

 Non linear: Syntax Tree ,DAG ,Control Flow Graph

 Linear :Postfix code, Three-address code , SSA code

 (A) Three address code is an intermediate representation.

 (B) Abstract Syntax Tree is an intermediate representation.

 (C) CFG is an intermediate representation & used for code optimization.

 (D) Symbol Table is the abstract data structure use by compiler to store all the
information about identifiers used in the program.

 Every phases of compiler interact with symbol table.

 Ans: (D) Symbol table

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2021,Set-2,Q38: For a statement S in a program, in the context of liveness analysis,

the following sets are defined:

 USE(S) : the set of variables used in S

 IN(S) : the set of variables that are live at the entry of S

 OUT(S) : the set of variables that are live at the exit of S

 Consider a basic block that consists of two statements, S1 followed by S2. Which one of the

following statements is correct?

 (A) OUT(S1)=IN(S2)

 (B) OUT (S1)=IN (S2)∪ USE (S1)

 (C) OUT (S1)=IN (S2) ∪ OUT (S2)

 (D) OUT (S1)=USE (S1)∪IN (S2)

 OUT[B] =𝑈𝑆 𝑎 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 𝑜𝑓 𝐵 IN[S]

 IN[B] = useB 𝑈 (OUT[B] - defB)

 (A) True

 (B) false due to USE (S1)

 (C) false due to OUT (S2)

 (D) false due to USE (S1)

 Ans : (A) OUT(S1)=IN(S2)

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2022 | Question: 55

 Consider the following grammar along with translation rules.

 S→S1#T {S.val=S1.val∗T.val}

 S→T {S.val=T.val}

 T→T1%R {T.val=T1.val÷R.val}

 T→R {T.val=R.val}

 R→id {R.val=id.val}

 Here # and % are operators and id is a token that represents an integer and id.val represents the

corresponding integer value. The set of non-terminals is {S, T, R, P} and a subscripted non-

terminal indicates an instance of the non-terminal.

 Using this translation scheme, the computed value of S.val for root of the parse tree for the

expression 20#10%5#8%2%2 is _______.

 Left-recursive rules indicates left associativity

 # and % are left associative.% have higher precedence than #.

 Replace # with * and % with / : 20 * 10 / 5 * 8 / 2 / 2

 = 20 * 2 * 8 / 2 / 2= 20 * 2 * 4 / 2

 = 20 * 2 * 2= 40*2 =80

 Ans : 80

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 S→S1#T {S.val=S1.val∗T.val}

 S→T {S.val=T.val}

 T→T1%R {T.val=T1.val÷R.val}

 T→R {T.val=R.val}

 R→id {R.val=id.val}

 Expression: 20#10%5#8%2%2

S
#

S

T

S
T

T

R

id

T
%

R

R

id

id

%
R

id

.val=20
.val=10

.val=5

.val=2

.val=40

.val=2

.val=2

.val=2

.val=80

T

T
%

R

R

id

id

.val=8

.val=2

.val=4

 Ans : 80

.val=20

.val=20

.val=20

.val=10

.val=10 .val=5

.val=8

.val=8 .val=2

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2023 | Question: 26
 Consider the following program :

 Which one of the following options represents the
activation tree corresponding to the main function?

 (A) (B) (C) (D)

int main()

{

 f1();

 f2(2);

 f3();

 return(0);

}

int f1()

{

 return(1);

}

int f2 (int X)

{

 f3 () ;

 if (X == 1)

 return f1 () ;

 else

 return (X*f2(X-1));

}

int f3 ()

{

 return (5) ;

}

 Ans : (A)

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2023 | Question: 27
 Consider the control flow graph shown.
 Which one of the following choices correctly lists the set of live variables at the

exit point of each basic block?
 (a) B1: { }, B2: {a}, B3: {a}, B4: {a}
 (b) B1: {i, j}, B2: {a}, B3: {a}, B4: {i}
 (c) B1: {a, i, j}, B2: {a, i, j}, B3: {a, i}, B4: {a}
 (d) B1: {a, i, j}, B2: {a, j}, B3: {a, j}, B4: {a, i, j}
 OUT[B] =𝑈𝑆 𝑎 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 𝑜𝑓 𝐵 IN[S]

 IN[B] = useB 𝑈 (OUT[B] - defB) , IN[exit] = ∅
 useB1

 ={m,n}, defB1
 ={i,j,a} ,useB2

 ={i,j}, defB2
 ={i,j}

 useB3
 ={ }, defB3

 ={a} ,useB4
 ={a}, defB4

 ={i}
 OUT[B4]=IN[exit] 𝑈 IN[B2] =∅ 𝑈 {a,i,j}={a,i,j}
 IN[B4] = {a} 𝑈 ({a,i,j}- {i})={a,j}
 OUT[B3]= IN[B4] ={a,j}
 IN[B3] ={} 𝑈 ({a,j}- {a})={j}
 OUT[B2]= IN[B3] 𝑈 IN[B4] ={j} 𝑈{a,j}={a,j}
 IN[B2]={i,j} 𝑈({a,j,}-{i,j})={a,i,j}
 OUT[B1]= IN[B2]={a,i,j}
 IN[B1]={m,n} 𝑈 ({a,i,j}-{i,j,a})={m,n}
 OUT are set of live variables at the exit point of each basic block.
 Ans : (D)

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2023 | Question: 50

 Consider the syntax directed translation given by the following grammar and semantic rules.

Here N, I, F and B are non-terminals. N is the starting non-terminal, and #, 0 and 1 are lexical

tokens corresponding to input letters “#”, “0” and “1”, respectively. X.val denotes the

synthesized attribute (a numeric value) associated with a non-terminal X. I1 and F1 denote

occurrences of I and F on the right hand side of a production, respectively. For the tokens 0

and 1, 0.val = 0 and 1.val = 1.

 N → I #F N.val = I.val + F.val

 I → I1 B I.val =(2I1.val)+B.val

 I → B I.val = B.val

 F → BF1 F.val = ½ (B.val+F1.val)

 F → B F.val = ½ B.val

 B → 0 B.val = 0.val

 B → 1 B.val = 1.val

 The value computed by the translation scheme for the input string

10#011 is________. (Rounded off to three decimal places)

I
#

N

F

I1 B

B

1

0

B F1

0 B F1

1 B

1

.val=1

.val=1 .val=0

.val=2

.val=0

.val=1

.val=1

.val=.5

.val=.75

.val=.375

.val=2.375

2.375

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2024 | Set 2 | Question: 19

 ​​​​​Which of the following statements is/are FALSE?

 (A)An attribute grammar is a syntax-directed definition (SDD) in which the functions in the
semantic rules have no side effects

 (B)The attributes in a L-attributed definition cannot always be evaluated in
gumv yua depth-first order

 (C)Synthesized attributes can be evaluated by a bottom-up parser as the input is parsed

 (D)All L-attributed definitions based on LR(1) grammar can be evaluated using a bottom-up
parsing strategy

 (A) A syntax-directed definition (SDD) is a context-free grammar with attributes and semantic
rules to evaluate the attributes

 Attribute grammars are SDDs with no side effects ,True

 (B) L-attributed definitions are a class of syntax-directed definitions where attributes can
always be evaluated in depth first order , False

 (C) Synthesized Attributes can be evaluated by a bottom-up parser, True

 (D) Attributes are evaluated top down ,pre order traversal or depth first traversal , False

 Ans: B,D

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2024 | Set 1 | Question: 27

 Consider the following syntax-directed definition (SDD).

 Given "MMLK" as the input, which one of

the following options is the CORRECT value

computed by the SDD (in the attribute 𝑆.𝑣𝑎𝑙)?

 (A)45 (B)50

 (C)55 (D)65

𝑆→𝐷𝐻𝑇𝑈 {𝑆.𝑣𝑎𝑙=𝐷.𝑣𝑎𝑙+𝐻.𝑣𝑎𝑙+𝑇.𝑣𝑎𝑙+𝑈.𝑣𝑎𝑙};

𝐷→"M"𝐷1 {𝐷.𝑣𝑎𝑙=5+𝐷1.𝑣𝑎𝑙};

𝐷→𝜖 {𝐷.𝑣𝑎𝑙=−5};

𝐻→"L"𝐻1 {𝐻.𝑣𝑎𝑙=5∗10+𝐻1.𝑣𝑎𝑙};

𝐻→𝜖 {𝐻.𝑣𝑎𝑙=−10};

𝑇→"C" 𝑇1 {𝑇.𝑣𝑎𝑙=5∗100+𝑇1.𝑣𝑎𝑙;};

𝑇→𝜖 {𝑇.𝑣𝑎𝑙=−5};

𝑈→ "K" {𝑈.𝑣𝑎𝑙=5};

S

D H T U

M
D

M

D

𝜖

L H

𝜖

𝜖 K

.val=-5

.val=0

.val=5

.val=-10

.val=40 .val=-5 .val=5

.val=5+40-5+5=45

❖ Ans: (A)45

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2024 | Set 2 | Question: 33

 ​Consider the following expression: 𝑥[𝑖]=(𝑝+𝑟)∗−𝑠[𝑖]+𝑢/𝑤. The following sequence shows the

list of triples representing the given expression, with entries missing for triples (1),(3), and (6).

 Which one of the following options fills in the missing entries CORRECTLY?

 (A) (1) =[]s𝑖 (3)∗(0)(2) (6) []=𝑥𝑖

 (B) (1)[]=𝑠𝑖 (3)−(0)(2) (6)=[]𝑥(5)

 (C) (1)=[] s𝑖 (3)∗(0)(2) (6)[]=𝑥(5)

 (D) (1)[] =𝑠𝑖 (3)-(0)(2) (6)=[] 𝑥𝑖



(0) + 𝑝 𝑟

(1)

(2) uminus (1)

(3)

(4) / 𝑢 𝑤

(5) + (3) (4)

(6)

(7) = (6) (5)

= [] si

* 0 2

[]= xi

Ans :(A) (1) =[]s𝑖 (3)∗(0)(2) (6) []=𝑥𝑖

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2024 | Set 1 | Question: 29

 Consider the following pseudo-code.

 𝐿1:𝑡1=−1

 𝐿2:𝑡2=0

 𝐿3:𝑡3=0

 𝐿4:𝑡4=4∗𝑡3

 𝐿5:𝑡5=4∗𝑡2

 𝐿6:𝑡6=𝑡5∗𝑀

 𝐿7:𝑡7=𝑡4+𝑡6

 𝐿8:𝑡8=𝑎[𝑡7]

 𝐿9:if t8<= max goto L11

 𝐿10:𝑡1=𝑡8

 𝐿11:𝑡3=𝑡3+1

 𝐿12:if t3 < M goto L4

 𝐿13:𝑡2=𝑡2+1

 𝐿14:if t2<N goto L3

 𝐿15:𝑚𝑎𝑥=𝑡1

 Which one of the following options CORRECTLY
specifies the number of basic blocks and the
number of instructions in the largest basic block,
respectively?

 (A)6 and 6 (B)6 and 7 (C)7 and 7 (D)7 and 6
 The rules for finding leaders are:
1. The first three-address instruction in the

intermediate code is a leader.
2. Any instruction that is the target of a conditional

or unconditional jump is a leader.
3. Any instruction that immediately follows a

conditional or unconditional jump is a leader.

 Leader: 1,3,4,10,11,13,15

B1

B2

B3

B4

B5

B6

B7

 Number of basic blocks=7

 Number of instructions in the largest basic block=6

 Ans : (D)7 and 6

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

