https://monalisacs.com

Theory of Computation Chapter 3:Recursive enumerable Language

GATE Computer Science Lectures By Monalisa Pradhan

Section 6: Theory of Computation(≅ 10mark) https://monalisacs.com/ Regular expressions and finite automata. Context-free grammars and push-down automata. Regular and context free languages, pumping lemma. Turing machines and undecidability.

- Chapter 1:Regular Language [RL,FA,RE,Pumping lemma]
- Chapter 2: Context free Language [Grammar(RG,CFG),CFL,PDA, Pumping lemma]
- Chapter 3: Recursive enumerable Language [CSL, LBA, RS, RES, TM]
- Chapter 4: Undecidability

Turing Machine

B

Η

Η

q_f,B,R

q₁,1,R

Η

Η

 \mathbf{q}_0

 \mathbf{q}_1

q_f

B→B,R

Η

Η

q₀,0,L

- The Mathematical representation of Recursive Enumerable language is called TM.
- FA+2 stack=FA + Tape with read & write capability is called Turing Machine.
- TM has 7 tuple M= $(\hat{Q}, \Sigma, \delta, \Gamma, B, q_0, F)$
- Q:Set of States.
- Σ :Set of input alphabet.
- δ :Transition function where δ : $Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$
- Γ :Set of Tape Symbol.
- B:Blank symbol.
- q_0 :Initial state.
- F:Set of Final State.
- Instantaneous Description(ID)
- ID describe next move of TM. The next move of TM depends on two entry.

 $0 \rightarrow 1.R$

- 1.Current state
- 2.Current input symbol.
- Representation of Turing Machine:
- It can be represented in 2 way
- 1-Transition Diagram
- 2-Transition Table
- The State where transition is not defined is called as halt.

- **Block diagram of Turing Machine:**
- TM consist of 3 component
- 1.Infinite Tape 2.R/W Header
- Infinite Tape:
- The tape is collection of cell.
- Every cell can hold only one input symbol.
- The empty cells are filling with blank symbol B.
- The tape divided into two part.
- Blank region: Contain infinite number of blank symbol B.
- Non Blank region: contain finite number of input string.
- The tape can be one way infinite, Two way infinite.
- **R/W** Ĥeader:
- The header can read symbol from tape or can write or modify symbol over tape.

3. Finite control Unit

- After accessing the input symbol from the current cell the header can move to exactly one cell toward left or right.
- The header movement is bidirectional.
 FCU:
- FCU takes care of implementation of mathematical logic.
- FCU implement all the movement of TM defined by ID.

Infihtips://monalisacs.com

B 0 1 0 B B

↑R/W Head

FCU

- TM is the abstract model of real computing model.
- The computing power of TM=computing power of RAM or Computer.
- Every mathematical function which is computable can be implement by TM.
- TM can be designed as:
- 1.language Accepter
- 2.Language Generator or enumerator
- 3.Input output device.
- TM can be constructed in two mode:1.DTM, 2.NTM.
- E(DTM)=E(NTM)
- DTM is more efficient than NTM.
- TM as Language Accepter:
- TM accept every Language accepted by FA & PDA also accept some language which are not accepted by PDA.
- TM is more powerful than FA & PDA.
- E(TM)=4(RL,CFL,CSL,REL)
- The language accepted by TM is called as REL.

https://monalisacs.com

Acceptance by TM:

- After taking input string there are 3 possibility of TM
- 1.May go to final halt.
- 2.May go to non final halt.
- 3.May go to loop.
- After reading input string if TM goes to final halt then input string is accepted by TM.If TM reaches nonfinal halt then input string is rejected by TM.
- On input string if TM goes to infinite loop then acceptance is undecidable.
- The halting problem of TM is undecidable.
- If TM accept the RL then header movement is always right.
- If TM constructed for accepting non RL then header movement is both left & right.
- Hence halt not garneted may go to loop.
- The TM goes to loop iff the header movement is both left & right.
- The transition function can't be defined for \in .
- Since it can't be placed on tape.
- If q_f is final halt then no transition allowed at q_f .

Construct Turing Machine for Context Free Language: https://monalisacs.com/										
•	$\Sigma = \{a, b\}$									
•	$L_1 = \{a^n b^n n \ge 1\} = \{ab, aabb, aaabbb, \dots, y \rightarrow y, R, a \rightarrow a, L\}$.}	a		b		X	у	,	В
	$a \rightarrow a, R$ $y \rightarrow y, I$	A	(B,x,l	R)				(D,y,R)	
	$\rightarrow (A) \xrightarrow{a \to x, R} (B) \xrightarrow{b \to y, L} (C)$	B	(B,a,I	१)	(C,y,I	Ĺ)		(B,y,R)	
у	\rightarrow y,R x \rightarrow x,R	C	(C,a,I	.)			(A,x,R	()	C,y,L)	
	$\begin{array}{c} \\ D \\ \hline \\ B \rightarrow B \cdot R \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ E \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array}$	D						(D,y,R)	(E,B,R)
	$y \rightarrow y, R$	E								
•	$Q = \{A, B, C, D, E\} \bullet \delta(A, a) = (B, x, R)$									
•	$\Sigma = \{a,b\}$ • $\delta(A,y) = (D,y,R)$	•	δ(C.y	v)=(C.v.L)				
•	$\Gamma = \{a, b, x, y, B\}$ • $\delta(B, a) = (B, a, R)$	•	$\delta(C, x)$	()=(A,x,R	/ ()				
•	B $\delta(B,y)=(B,y,R)$	•	δ(D,v	/)=(D,y,R	ĺ)				
•	$q_0 = A$ • $\delta(B,b) = (C,y,L)$	•	δ(D,]	ý)=((E,B,I	Ŕ)				
	$F=E$ • $\delta(C,a)=(C,a,L)$,		/	h	ttps://wv	vw.youtube.cor	m/@MonalisaCS /

- $L_2 = \{wcw | w \in (a+b)^*\}$
- ={c,aca,bcb,abcab,baacbaa....}

				https://r	nonalisa	cs.com/

- **DTM** :The TM is said to be deterministic if every $\delta(q,x)$ has at most one outcome for all $x \in \Gamma$.
- NTM: The TM is said to be Non deterministic if every $\delta(q,x)$ has more than one outcome for all $x \in \Gamma$.

Recursive Set Vs Recursive Enumerable Set

https://monalisacs.com

- The language accepted by TM is called as TM recognizable language.
- It is of two type
- 1.Recursive Set/Language
- 2.Recursive enumerable set/Language
- 1.The language L accepted by TM is said to be **Recursive** if for every x∈L TM goes to final halt & every x∉L TM goes to non final halt.
- The language accepted by TM for which membership property is <u>decidable</u> is called Recursive Set also called <u>Turing Decidable</u>.
- 2. The Language L accepted TM is said to be **Recursive Enumerable** if for every x∈L TM goes to final halt & every x∉L TM goes to non final halt or <u>loop</u>.
- The language accepted by TM for which membership property is <u>undecidable</u> is called Recursive Enumerable Set also called <u>Turing recognizable</u>.

Language	RS	RES
The TM halt on every $x \in \Sigma^*$	Yes	May or may not
The TM responds for every $x \in \Sigma^*$	Yes	May or may not
If it can implemented by	an Algorithm.	Procedure

- Every RS is RES but every RES need not be RS
- RS=Enumeration Properties +Membership is decidable
- RES=Enumeration Properties +Membership is Undecidable
- Closer Properties of Recursive Set
- Recursive Set is closed under following operator
- Union ,Intersection ,Concatenation , Complement ,Kleene closer , Reversal ,Difference ,Inverse homomorphism ,Intersection with Regular set.
- Recursive Set is not closed under Homomorphism ,Quotient with Regular
- Closer Properties of Recursive Enumerable Set
- Recursive Enumerable Set is closed under following operator
- Union ,Intersection , Concatenation ,Kleene closer , Homomorphism ,Inverse Homomorphism ,Intersection with Regular Set, Quotient with Regular set
- Recursive Enumerable Set is not closed under <u>Complement</u>, <u>Difference</u>
- ♦ L=RES $\Rightarrow \overline{L}$ =need not be RES
- Both L & \overline{L} can be Recursive.
- Both L & \overline{L} can not be Recursive Enumerable.

https://monalisaes.com

RES

RS

Turing Machine as Transducer:

- TM can be design to implement basic mathematical operation +,-,×,÷
- The function which is implemented by TM is called as computable function.
- The function which can't be implemented by TM is called uncomputable function.
- Ex: \sqrt{x} ,log x

 $1 \rightarrow 1.R$

- Computable function are divided into two types C
- 1.Total computable 2.Partial computable.
- Total computable =Recursive Set=Algorithm

 $\mathcal{F}_{R \rightarrow R.L}$

• Partial computable=Recursive enumerable set=Procedure=Partial recursion

 $B \rightarrow 1, R$

- Ex 1:f(x)=x+1, Σ ={1}
- 2=11,f(2)=111
- Ex 2:f=x+y=111+11=11111

 $1 \rightarrow 1.R$

- Enumerator=System + Printer
- Enumeration is the process of generation and listing in a finite amount of time.
- Enumeration process can be implemented by TM. So it is called as Enumerator.
- The TM that implement enumerator consist of 3 tape
- Tape 1=Input, Tape 2=Workspace, Tape 3=Output
- The TM take input from input tape & generate the string that will return on output tape. I/p | B | 0 | 1 | 0 | B | WorkSpace
- The string written on output tape can't be modified. They are separated by # symbol.
- Universal Turing Machine:
- Every TM accept only one language, single task oriented.
- RAM is multitask oriented system.
- RAM can be simulated by Universal Turing Machine(UTM).
- UTM is a multi tasking system.

Linear Bounded Automata:

- The mathematical representation of CSL is called as LBA.
- LBA is NTM with following 2 condition
- 1.Include 2 special Symbol(\$ Left end Marker ,⊄Right end marker)
- 2.R/W header can't move left from \$ & right from ⊄
- Context Sensitive Language:
- The language which is accepted by LBA or generated by CSG is called CSL.
- CSL is free from empty string (\in) .
- Context Sensitive Grammar
- $L_1 = \{a^n b^n c^n | n \ge 1\}$
- $S \rightarrow aSAc/abc$
- $cA \rightarrow Ac$
- bA →bb
- Let w=aabbcc
- $S \rightarrow aSAc$
 - → aabcAc
- \rightarrow aabAcc
 - \rightarrow aabbcc

• Example of CSL • $L_1 = \{a^n b^n c^n | n \ge 1\}$

- $L_2 = \{ww \mid w \in (a+b)^+\}$
- $L_3 = \{a^m b^n c^m d^n \mid m, n \ge 1\}$
- $L_4 = \{www | w \in (a+b)^+\}$
- $L_5 = \{a^{n^2} | n \ge 1\}$
- $L_6 = \{a^{2^n} \mid n \ge 1\}$
- $L_7 = \{a^{n!} | n \ge 1\}$
- L₈={a^p | p is a +ve prime number}
- L₉={a^p | p is not a prime number}
- $L_{10} = \{a^i b^j c^k | j = i \times k, i, j, k \ge 1\}$
- Closer Properties of CSL:
- CSL is closed under following operation
- Union, Intersection, Complement ,Concatenation ,Kleene Closer , Reversal ,Inverse homomorphism ,Substitution ,Intersection with Regular Set.
- CSL is not closed under Homomorphism ,Quotient with Regular Set.
- Every CSL is recursive Set but Recursive need not be CSL

