
Algorithms

Chapter 4: Divide and conquer

GATE CS Lectures

 by Monalisa
M

on
ali

sa
CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Section 5: Algorithms

 Searching, sorting, hashing. Asymptotic worst case time and space complexity. Algorithm design
techniques : greedy, dynamic programming and divide‐and‐conquer . Graph traversals, minimum
spanning trees, shortest paths

 Chapter 1:Algorithim Analysis:-Algorithm intro , Order of growth ,Asymptotic notation, Time
complexity, space complexity, Analysis of Recursive & non recursive program, Master theorem]

 Chapter 2:Brute Force:-Sequential search, Selection Sort and Bubble Sort , Radix sort, Depth first Search
and Breadth First Search.

 Chapter 3: Decrease and Conquer :- Insertion Sort, Topological sort, Binary Search .

 Chapter 4: Divide and conquer:-Min max problem , matrix multiplication ,Merge sort ,Quick Sort , Binary
Tree Traversals and Related Properties .

 Chapter 5: Transform and conquer:- Heaps and Heap sort, Balanced Search Trees.

 Chapter 6: Greedy Method:-knapsack problem , Job Assignment problem, Optimal merge, Hoffman
Coding, minimum spanning trees, Dijkstra’s Algorithm.

 Chapter 7: Dynamic Programming:-The Bellman-Ford algorithm ,Warshall’s and Floyd’s Algorithm ,Rod
cutting, Matrix-chain multiplication ,Longest common subsequence ,Optimal binary search trees

 Chapter 8: Hashing.

 Reference : Introduction to Algorithms by Thomas H. Cormen

 Introduction to the Design and Analysis of Algorithms, by Anany Levitin

 My Note

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Chapter 4: Divide and conquer

 Min max problem ,

 Matrix multiplication ,

 Merge sort ,

 Quick Sort ,

 Binary Tree Traversals and Related Properties .

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Divide and conquer
 Divide-and-conquer algorithms work according to

the following general plan:

 Divide the problem into a number of subproblems

that are smaller instances of the same problem.

 Conquer the subproblems by solving them

recursively. If the subproblem sizes are small

enough, however, just solve the subproblems in a

straightforward manner.

 Combine the solutions to the subproblems into the

solution for the original problem.

 Divide-and-conquer recurrence T(n) = aT(n/b) +f(n)

 When the subproblems are large enough to solve

recursively, we call that the recursive case.

 Once the subproblems become small enough that we

no longer recurse,we say that the recursion “bottoms

out” and that we have gotten down to the base case.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Master Theorem for Divide & conquer Recurrence

 T (n) = aT (n/b) + f (n) [a>0 ,b>1 ,f (n) is a +ve function]
 Case 1:if f(n)=O(nlogba-𝜖), for some 𝜖 >0 then T(n) is Θ(nlogba)
 Case 2:if f(n)=Θ(nlogba *logkn), for some k

a) k>-1 then T(n) is Θ(nlogba *logk+1n)
b) k=-1 then T(n) is Θ(nlogba *log log n)
c) k<-1 then T(n) is Θ(nlogba)

 Case 3:if f(n)=𝛺(nlogba+𝜖) for some constant 𝜖 > 0, and if af (n/b)≤ cf(n) for some constant c < 1
and all sufficiently large n, then T (n)= Θ (f(n)).

 Ex :
 T(n)=2T(n/2)+1 T(n)=2T(n/2)+nlogn
 T(n)=T(2n/3)+1 T(n)=T(n/3)+n

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Min Max problem:
 Algorithm MAXMIN(A , n , Max , Min)
 Max=Min=A[0]
 for i ← 1 to n-1
 {if(A[i] > Max)
 Max=A[i];
 else if(A[i] < Min)
 min=A[i]; }
 Best case comparison =n-1 [Ascending order]
 Worst case comparison =2(n-1) [Descending order]

 Average case comparison=
3𝑛

2
-1=1.5n-1 [Random order]

 Example : 0 1 2 3 4 5 6 7 8

8 16 -3 12 18 25 30 3 20

 Max=Min=A[0]=8
 i=1,16>8, Max=16
 i=2,-3>16,-3<8, Min=-3
 i=3,12>16,12<-3, no change
 i=4,18>16,Max=18
 i=5,25>16,Max=25

 i=6,30>25, Max=30

 i=7,3>30,3<-3, no change

 i=8,20>30,20<-3, no change

 Max=30 ,Min=-3

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Algorithm DC MaxMin :-

0,8,Max ,Min

0,4,Max ,Min 5,8,Max ,Min

0,2,Max ,Min 3,4,Max ,Min 5,6,Max ,Min 7,8,Max ,Min

0,1,Max ,Min 2,Max ,Min

0 1 2 3 4 5 6 7 8

8 16 -3 12 18 25 30 3 20

16 8 -3

16 -3 18 12

18 -3

30 25 20 3

30 3

30 -3

 Let T(n) total number of comparison

 T(n)=0 n=1

 =1 n=2

 =2T(
𝑛

2
)+2 n>2

 T(n)=2T(
𝑛

2
)+2

 =2(2T(
𝑛

22)+2)+2

 =22T(
𝑛

22)+22+2

 T(n)=2kT(
𝑛

2k)+෌
i=1

𝑘
2i

 =2kT(
𝑛

2k

)+

2 2𝑘−1

2−1

 [
𝑛

2k

=2 ⇒ n=2k+1⇒ k+1=log n]

 T(n)=
𝑛

2
 T(2)+n-2

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 =
𝑛

2
+n-2=

3𝑛

2
 -2

 In all case T(n)=
3𝑛

2
 -2=1.5n-2

 Time complexity for both algorithm =O(n)

 GATE CSE 2007 | Question: 50

 An array of n numbers is given, where n is an even number. The maximum as well as the

minimum of these n numbers needs to be determined. Which of the following is TRUE about

the number of comparisons needed?

 (A) At least 2n – c comparisons, for some constant c, are needed.

 (B) At most 1.5n – 2 comparisons are needed.

 (C) At least nLog2n comparisons are needed.

 (D) None of the above.

 Ans: (B) At most 1.5n – 2 comparisons are needed.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Strassen’s Algorithm for matrix multiplication
 If A and B are square n×n matrices, then in the product C=A.B, we define the entry Cij, for i, j = 1,

2 …., n, by Cij =σ𝑘=1
𝑛 Aik. Bkj [Eq 1]

 We must compute n2 matrix entries, and each is the sum of n values.
 SQUARE-MATRIX-MULTIPLY(A, B)
1. n= A:rows
2. let C be a new 𝑛 × 𝑛 matrix
3. for i = 1 to n
4. for j = 1 to n
5. Cij = 0
6. for k =1 to n
7. Cij = Cij + Aik . Bkj

8. return C
 Each of the triply-nested for loops runs exactly n iterations, and each execution of line 7 takes

constant time, SQUARE-MATRIX-MULTIPLY takes Θ (n3) time.

 A simple divide-and-conquer algorithm
 C= A . B, we assume that n is an exact power of 2 in each of the n × n matrices.
 Suppose that we partition each of A, B, and C into four n/2 × n/2 matrices.

 A=
𝐴11 𝐴12

𝐴21 𝐴22
, B=

𝐵11 𝐵12

𝐵21 𝐵22
,C=

𝐶11 𝐶12

𝐶21 𝐶22

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 So we rewrite the equation C=A.B as
𝐶11 𝐶12

𝐶21 𝐶22
=

𝐴11 𝐴12

𝐴21 𝐴22
 .

𝐵11 𝐵12

𝐵21 𝐵22

 C11=A11.B11+A12.B21 C12=A11.B12+A12.B22 C21=A21.B11+A22.B21 C22=A21.B12+A22.B22

 Hence, recurrence for divide-and-conquer algorithm:

 T(n)=ቊ
Θ 1 if n ≤ 2

8T Τ𝑛 2 + Θ 𝑛2 if n > 2

 By the master method the solution T (n)= Θ(n3).

 Strassen’s method

 Instead of performing eight recursive multiplications of n/2 × n/2 matrices ,it performs only seven.

 The cost of eliminating one matrix multiplication will be several new additions of n/2 × n/2
matrices, but still only a constant number of additions.

 Strassen’s method has four steps:

 1. Divide the input matrices A and B and output matrix C into n/2 × n/2 submatrices.

 This step takes Θ (1) time by index calculation.

 2. Create 10 matrices S1,S2,…S10, each of which is n/2×n/2 and is the sum or difference of two

matrices created in step 1.

 We can create all 10 matrices in Θ(n2) time.

 3. Using the submatrices created in step 1 and in step 2,recursively compute

seven matrix products P1, P2 ,…..P7. Each matrix Pi is n/2 × n/2.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 4. Compute the desired submatrices C11, C12, C21, C22 of the result matrix C by adding and
subtracting various combinations of the Pi matrices. We can compute all four submatrices in
Θ(n2) time.

 Let us assume that once the matrix size n gets down to 2, we perform a simple scalar
multiplication, just as in line 4 of SQUARE-MATRIX-MULTIPLY-RECURSIVE.

 When n > 2, steps 1, 2, and 4 take a total of Θ(n2) time, and step 3 requires us to perform
seven multiplications of n/2 × n/2 matrices.

 Hence, recurrence for Strassen’s algorithm:

 T(n)=ቊ
Θ 1 if n ≤ 2

7T Τ𝑛 2 + Θ 𝑛2 if n > 2
 By the master method the solution T (n)= Θ(nlg 7)= Θ(n2.807).
 Step 2:
 S1 =B12-B22, S2 =A11+A12 , S3 =A21+A22, S4 =B21-B11, S5 =A11+A22,
 S6 =B11+B22, S7 =A12-A22 , S8 =B21+B22, S9 =A11-A21, S10 =B11-B12,
 We must add or subtract matrices 10 times, this step take Θ(n2) time.
 Step 3: P1=A11.S1 P2=S2.B22 P3=S3 .B11

 P4=A22.S4 P5=S5.S6 P6=S7.S8 P7=S9.S10

 Step 4

 C11= P5 + P4 - P2 + P6 C12= P1 + P2

 C21= P3 + P4 C22= P5 + P1 – P3 – P7

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Mergesort
 The merge sort algorithm follows the divide-and-conquer paradigm. It operates as follows.

 Divide: Divide the n-element sequence to be sorted into two subsequences of n/2 elements each.

 Conquer: Sort the two subsequences recursively using merge sort.

 Combine: Merge the two sorted subsequences to produce the sorted answer.

 ALGORITHM Mergesort(A[0..n - 1])

 /Sorts array A[0..n - 1] by recursive mergesort

 //Input: An array A[0..n - 1] of orderable elements

 //Output: Array A[0..n - 1] sorted in nondecreasing order

 if n > 1

 copy A[0..n/2 - 1] to B[0..n/2 - 1]

 copy A[n/2..n - 1] to C[0..n/2 - 1]

 Mergesort(B[0..n/2 - 1])

 Mergesort(C[0..n/2 - 1])

 Merge(B, C, A)

 The key operation of the merge sort algorithm is the merging of two sorted

sequences in the “combine” step.We merge by calling procedure MERGE.

 It merges them to form a single sorted array A.

 MERGE procedure takes time Θ(n).

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 ALGORITHM Merge(B[0..p - 1], C[0..q - 1], A[0..p + q - 1])
 //Merges two sorted arrays into one sorted array
 //Input: Arrays B[0..p - 1] and C[0..q - 1] both sorted
 //Output:Sorted array A[0..p + q - 1] of the elements of B and C
 i ← 0; j ← 0; k ← 0
 while i < p and j < q do
 if B[i] ≤ C[j]
 A[k] ← B[i]; i ← i + 1
 else A[k] ← C[j]; j ← j + 1
 k ← k + 1
 if i = p
 copy C[j..q - 1] to A[k..p + q - 1]
 else copy B[i..p - 1] to A[k..p + q - 1]

 Divide: The divide step just computes the middle of the subarray,
which takes constant time. Thus, D(n)= Θ (1).

 Conquer: We recursively solve two subproblems, each of size
n/2, which contributes 2T(n/2) to the running time.

 Combine: We have already noted that the MERGE procedure on
an n-element subarray takes time Θ(n), and so C(n)=Θ(n).

 The recurrence relation for the number of key comparisons C(n)
is C(n) = 2C(n/2) + Cmerge(n) for n > 1, C(1) = 0.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Cmerge(n), the number of key comparisons performed during the merging stage.
 At each step, exactly one comparison is made, after which the total number of elements in the

two arrays still needing to be processed is reduced by 1.
 In the worst case, neither of the two arrays becomes empty before the other one contains just

one element .
 Number of comparison in Best case=n1 ,Worst case=n1+n2-1=n-1 [let |B|=n1,|C|=n2]
 Therefore, for the worst case, Cmerge(n) = n - 1, and we have the recurrence
 Cworst(n) = 2Cworst(n/2)+n-1 for n>1 ,Cworst(1)=0

 T(n)=൜
𝑐 𝑖𝑓 𝑛 = 1,

2𝑇 Τ𝑛 2 + 𝑐𝑛 𝑖𝑓 𝑛 > 1,

 By master theorem running time of merge sort is Θ(nlogn) [Best ,Worst ,Average case]
 Space complexity =c + n + log n(Stack)=O(n)
 Merge sort is not in place as it need extra memory but stable.
 2-way merge sort/Bottom-up Merging
 n=2k

 Let A = 31 , 28 , 17 , 65 , 35 , 42 , 86 , 25
 1st pass: 28,31, 17,65, 35,42, 25,86
 2nd pass:17,28,31,65, 25,35,42,86
 3rd pass:17,25,28,31,35,42,65,86
 Number of passes require=log2n,Time complexity = Θ(nlog2n)

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Pros and cons of Merge Sort:
 Pros:
 1.Large size problem
 2.Linked list (work on both array and linked list)
 3.External sorting (sort in external memory)
 4.Stable (order doesn’t change for repeated element.)
 Ex:3,8,2,3,7,4,after sort:2,3,3,4,7,8
 Cons:
 1.Extra space(not in place sort)
 2.No small problem (insertion sort work better than merge sort for small problem)
 3.recursive
 GATE CS 1995 | Question: 1.5,ISRO 2011
 Merge sort uses:
 (A)Divide and conquer strategy (B)Backtracking approach
 (C) Heuristic search (D) Greedy approach
 Ans : a)Divide and conquer strategy
 GATE CS 1995 | Question: 1.16
 For merging two sorted lists of sizes m and n into a sorted list of size m+n, we

require comparisons of
 (a) O(m) (b)O(n) (c)O(m+n) (d)O(logm+logn)
 Ans : (c)O(m+n)

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 1999 | Question: 1.14, ISRO2015-42
 If one uses straight two-way merge sort algorithm to sort the following elements in ascending order:

20, 47, 15, 8, 9, 4, 40, 30, 12, 17
 then the order of these elements after second pass of the algorithm is:
 (a)8, 9, 15, 20, 47, 4, 12, 17, 30, 40 (b)8, 15, 20, 47, 4, 9, 30, 40, 12, 17
 (c)15, 20, 47, 4, 8, 9, 12, 30, 40, 17 (d)4, 8, 9, 15, 20, 47, 12, 17, 30, 40
 Sol:
 1st pass:20,47, 8,15, 4,9, 30,40, 12,17
 2nd pass:8,15,20,47, 4,9,30,40, 12,17
 Ans : (b)8, 15, 20, 47, 4, 9, 30, 40, 12, 17
 ISRO2018,2020
 Of the following sort algorithms, which has execution time that is least dependent on initial ordering

of the input? (A)Insertion sort
 (B)Quick sort (C)Merge sort (D)Selection sort
 Ans : (C)Merge sort
 ISRO2018-35
 Given two sorted list of size m and n respectively. The number of comparisons needed the

worst case by the merge sort algorithm will be:
 (A)m×n (B)maximum of m and n
 (C)minimum of m and n (D)m+n−1
 Ans: (D)m+n−1

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Quicksort
 Description of quicksort
 Quicksort, applies the divide-and-conquer paradigm .
 The three-step divide-and-conquer process for sorting array A[l….r]
 Divide: Partition (rearrange) the array A[l….r] into two subarrays A[l..s - 1] and A[s + 1..r]

such that each element of A[l..s - 1] is less than or equal to A[s] , which is, in turn, less than or
equal to each element of A[s + 1..r]. Compute the index s as part of this partitioning
procedure.

 Conquer: Sort the two subarrays A[l..s - 1] and A[s + 1..r] by recursive calls to quicksort.
 Combine: Because the subarrays are already sorted, no work is needed to combine

them: the entire array A[l….r] is now sorted.

 Obviously, after a partition is achieved, A[s]

will be in its final position in the sorted array, and we can continue sorting the two subarrays

to the left and right of A[s] independently.

 Note the difference with merge sort :

 There, entire work happens in combining their solutions;

 Here, the entire work happens in the division stage, with no work required

to combine the solutions to the subproblems.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 ALGORITHM Quicksort(A[l..r])

 //Input: Subarray of array A[0..n - 1], defined by its left and right indices l and r

//Output: Subarray A[l..r] sorted in nondecreasing order

 if l < r

 s ←Partition(A[l..r]) //s is a split position

 Quicksort(A[l..s - 1])

 Quicksort(A[s + 1..r])

 C.A.R. Hoare, the prominent British computer scientist who invented quicksort .

 We will now scan the subarray from both ends,comparing the subarray’s elements to the pivot.

 The left-to-right scan, denoted below by index pointer i, starts with the second element.

 Since we want elements smaller than the pivot to be in the left part of the subarray, this scan

skips over elements that are smaller than the pivot and stops upon encountering the first

element greater than or equal to the pivot.

 The right-to-left scan, denoted below by index pointer j, starts with the last element of the

subarray.

 Since we want elements larger than the pivot to be in the right part of the

subarray, this scan skips over elements that are larger than the pivot and

stops on encountering the first element smaller than or equal to the pivot.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 After both scans stop, three situations may arise.

 If scanning indices i and j have not crossed, i.e.,i < j, we simply exchange A[i] and A[j] and

resume the scans by incrementing i and

decrementing j, respectively:

 If the scanning indices have crossed over, i.e.,

i > j, we will have partitioned the subarray

after exchanging the pivot with A[j]:

 Finally, if the scanning indices stop while pointing to the same element, i.e., i = j,the value

they are pointing to must be equal to p .

 Thus, we have the subarray partitioned,

with the split position s = i = j:

 We can combine this with the case of crossed-over indices (i > j) by exchanging the pivot

with A[j] whenever i ≥ j.

 ALGORITHM HoarePartition(A[l..r])

//Partitions a subarray by Hoare’s algorithm, using the first element as a pivot

//Input: Subarray of array A[0..n - 1], defined by its left(l) and right(r)(l < r)

//Output: Partition of A[l..r], with the split position returned by this function.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 p ← A[l]

 i ← l; j ← r + 1

 Repeat

 repeat i ← i + 1 until A[i] ≥ p

 repeat j ← j - 1 until A[j] ≤ p

 if(i<j)

 swap(A[i], A[j])

 until i ≥ j

 swap(A[l], A[j])

 return j

0 1 2 3 4 5 6 7

p:5 3 1 9 8 2 4 7

p:5 3 1 i:9 8 2 j:4 7

p:5 3 1 4 i:8 j:2 9 7

p:5 3 1 4 j:2 i:8 9 7

2 3 1 4 5 8 9 7

p:2 i:3 j:1 4

p:2 j:1 i:3 4

1 2 3 4

p,j:3 i:4

3 4

4

1

p:8 i:9 j:7

p:8 j:7 i:9

7 8 9

7 9

l=0,r=7

s=4

l=0,r=3

s=1

l=5,r=7

s=6

l=0,r=0 l=2,r=3

s=2

l=5,r=5 l=7,r=7

l=3,r=3

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Performance of quicksort

 The running time of quicksort depends on whether the partitioning is balanced or unbalanced,

which in turn depends on which elements are used for partitioning.

 If the partitioning is balanced, the algorithm runs asymptotically as fast as merge sort.

 If the partitioning is unbalanced, however, it can run asymptotically as slowly as insertion sort.

 Best-case partitioning

 In the most even possible split, PARTITION produces two subproblems, each of size no more

than n/2, since one is of size 𝑛/2 and one of size 𝑛/2 -1.

 In this case, quicksort runs much faster. The recurrence for the running time is then

T(n) = 2T(n/2) + Θ(n) for n > 1, T(1) = 0.

 By case 2 Master Theorem, T(n) ∈ Θ(n log2 n);

 Worst-case partitioning

 In the worst case, all the splits will be skewed to the extreme: one of the two subarrays will be

empty, and the size of the other will be just 1 less than the size of the array being partitioned.

 This situation will happen, for increasing arrays, if A[0..n - 1] is a strictly

increasing array and we use A[0] as the pivot, the left-to-right scan will

stop on A[1] while the right-to-left scan will go all the way to reach A[0],

indicating the split at position 0:

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 So, after making n + 1 comparisons to get to this partition and exchanging the pivot A[0] with

itself, the algorithm will be left with the strictly increasing array A[1..n - 1]to sort.

 This sorting of strictly increasing arrays of diminishing sizes will continue until the last one

A[n - 2..n - 1] has been processed.

 The total number of key comparisons made will be equal to

 Cworst(n) = (n + 1) + n + . . . + 3 =
𝑛+1 𝑛+2

2
 - 3 ∈ Θ(n2)

 The Quicksort recurrence for already sorted array

 T(n) = T(n-1) + T(0)+Θ(n)=T(n-1)+Θ(n) for n > 1, T(0) = Θ(1).

 The partitioning costs Θ(n) time . By substitution method T(n) ∈ Θ(n2);

 Therefore, the worst-case running time of quicksort is no better than that of insertion sort.

 Moreover, the Θ(n2) running time occurs when the input array is already completely sorted—a

common situation in which insertion sort runs in O(n) time.

 Average-case partitioning

 Assuming that the partition split can happen in each position s with

the same probability 1/n, we get the following recurrence relation:

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS




 Its solution ≅1.39n log2n
 Thus, on the average, quicksort makes only 39% more comparisons than in the best case.
 Better pivot selection methods such as randomized quicksort that uses a random element or

the median-of-three method that uses the median of the leftmost, rightmost, and the middle
element of the array .

 Like any sorting algorithm, quicksort has weaknesses. It is not stable. It requires a stack to
store parameters of subarrays that are yet to be sorted.

 The size of this stack can be made to be in O(log n) by always sorting first the smaller of two
subarrays obtained by partitioning, it is worse than the O(1) space efficiency of heapsort.

 ISRO-2013-12
 Which of the following sorting algorithms has the minimum running time

complexity in the best and average case?
 (A) Insertion sort, Quick sort (B)Quick sort, Quick sort
 (C) Quick sort, Insertion sort (D)Insertion sort, Insertion sort
 Ans : (A) Insertion sort, Quick sort
 GATE CS 1994 | Question: 1.19, ISRO2016-31

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Algorithm design technique used in quicksort algorithm is?

 (A) Dynamic programming (B)Backtracking (C) Divide and conquer (D)Greedy method

 Ans: (C) Divide and conquer

 GATE CS 2006 | Question: 52

 The median of n elements can be found in O(n) time. Which one of the following is correct

about the complexity of quick sort, in which median is selected as pivot?

 (A)Θ(n) (B)Θ(nlogn) (C)Θ(n2) (D)Θ(n3)

 As we choose the pivot a median element .So, good splits,best case Θ(nlogn).

 Ans : (B)Θ(nlogn)

 ISRO2015-12

 A machine needs a minimum of 100 sec to sort 1000 names by quick sort. The minimum time

needed to sort 100 names will be approximately

 (A)50.2 sec (B)6.7 sec (C)72.7 sec (D)11.2 sec

 Running time of quick sort = Θ(n lg n) =c n lg n

 For n = 1000, 100 = c * 1000 * lg 1000 =c*1000*10(approx lg 1000=9.966)

 ⇒c=
100

10000
= 0.01

 For n = 100, Running time = 0.01 * 100 * lg 100 =1* 6.64≅6.7

 Ans : (B)6.7 sec

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Binary Tree Traversals and Related Properties
 In this section, we see how the divide-and-conquer technique can be applied to binary trees.
 A binary tree T is defined as a finite set of nodes that is either empty or consists of a root and two

disjoint binary trees TL and TR called, respectively, the left and right subtree of the root.

 ALGORITHM Height(T)

 //Computes recursively the height of a binary tree

 //Input: A binary tree T

 //Output: The height of T

 if T = ∅ return -1

 else return max{Height(Tleft), Height(Tright)} + 1
 We measure the problem’s instance size by the number of nodes n(T) in a

given binary tree T .

 A(n(T)) = A(n(Tleft)) + A(n(Tright)) + 1 for n(T) > 0,

 A(0) = 0.

 The extra nodes(squares) are called external; the original nodes(circles)

are called internal.

 The number of external nodes x is always 1 more than the number of

internal nodes n: x = n + 1.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Consider the total number of nodes, both internal and external. Since every node, except the

root, is one of the two children of an internal node, we have the equation 2n + 1 = x + n

 Equality also applies to any nonempty full binary tree, in which, by definition, every node has

either zero or two children .

 The most important divide-and-conquer algorithms for binary trees are the three classic

traversals: preorder, inorder, and postorder.

 All three traversals visit nodes of a binary tree recursively, i.e., by visiting the tree’s root and

its left and right subtrees. They differ only by the timing of the root’s visit:

 In the preorder traversal, the root is visited before the left and right subtrees are visited.

 In the inorder traversal, the root is visited after visiting its left subtree but before visiting the

right subtree.

 In the postorder traversal, the root is visited after visiting the left and right subtrees.

 Finally, not all questions about binary trees require traversals of both left and right subtrees.

 For example, the search and insert operations for a binary search tree require processing only

one of the two subtrees.

 Accordingly, we considered them not as applications of divide-and conquer

but rather as examples of the decrease and conquer technique.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS



 Traverse the following binary tree

 a. in preorder. b. in inorder. c. in postorder.

 Preorder: a,b,d,e,c,f

 Inorder:d,b,e,a,c,f

 Postorder:d,e,b,f,c,a

 Draw a binary tree with 10 nodes in such a way that the inorder and

postorder traversals of the tree yield the following lists:9,3,1,0,4,2,7,6,8,5

(inorder) and 9,1,4,0,3,6,7,5,8,2 (postorder).

2

3 8

9 0

1 4

57

6

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

	Slide 1
	Slide 2
	Slide 3
	Slide 4: Divide and conquer
	Slide 5
	Slide 6: Min Max problem:
	Slide 7
	Slide 8
	Slide 9: Strassen’s Algorithm for matrix multiplication
	Slide 10
	Slide 11
	Slide 12: Mergesort
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Quicksort
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: Binary Tree Traversals and Related Properties
	Slide 26
	Slide 27

