
Algorithms

Chapter 5: Transform and conquer

GATE CS Lectures

 by Monalisa
M

on
ali

sa
CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Section 5: Algorithms

 Searching, sorting, hashing. Asymptotic worst case time and space complexity. Algorithm design
techniques : greedy, dynamic programming and divide‐and‐conquer . Graph traversals, minimum
spanning trees, shortest paths

 Chapter 1:Algorithim Analysis:-Algorithm intro , Order of growth ,Asymptotic notation, Time
complexity, space complexity, Analysis of Recursive & non recursive program, Master theorem]

 Chapter 2:Brute Force:-Sequential search, Selection Sort and Bubble Sort , Radix sort, Depth first Search
and Breadth First Search.

 Chapter 3: Decrease and Conquer :- Insertion Sort, Topological sort,Binary Search .

 Chapter 4: Divide and conquer:-Min max problem , matrix multiplication ,Merge sort ,Quick Sort , Binary
Tree Traversals and Related Properties .

 Chapter 5: Transform and conquer:- Heaps and Heap sort, Balanced Search Trees.

 Chapter 6: Greedy Method:-knapsack problem , Job Assignment problem, Optimal merge, Hoffman
Coding, minimum spanning trees, Dijkstra’s Algorithm.

 Chapter 7: Dynamic Programming:-The Bellman-Ford algorithm ,Warshall’s and Floyd’s Algorithm ,Rod
cutting, Matrix-chain multiplication ,Longest common subsequence ,Optimal binary search trees

 Chapter 8: Hashing.

 Reference : Introduction to Algorithms by Thomas H. Cormen

 Introduction to the Design and Analysis of Algorithms, by Anany Levitin

 My Note

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Chapter 5: Transform and conquer

 Heaps and Heap sort,

 Balanced Search Trees.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Transform-and-Conquer
 This design methods based on the idea of transformation .

 These methods work as two-stage procedures.

 First, in the transformation stage, the problem’s instance is modified to be, for one reason or

another, more amenable to solution.

 Then, in the second or conquering stage, it is solved.

 There are three major variations of this idea that differ by what we transform a given instance:

 Transformation to a simpler or more convenient instance of the same problem—we call it

instance simplification.

 Transformation to a different representation of the same instance—we call it representation

change.

 Transformation to an instance of a different problem for which an algorithm is already

available—we call it problem reduction. M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Heaps and Heapsort

 DEFINITION A heap can be defined as a binary tree with keys assigned to its nodes, one key

per node, provided the following two conditions are met:

 1. The shape property—the binary tree is essentially complete , i.e., all its levels are full

except possibly the last level, where only some rightmost leaves may be missing.

 2. The parental dominance or heap property—the key in each node is greater than or equal to

the keys in its children.

 The first tree is a heap.

 The second one is not a heap, because the tree’s shape property is violated.

 The third one is not a heap, because the parental dominance fails for the node 5.

 Note that key values in a heap are ordered top down, i.e., a sequence of values

on any path from the root to a leaf is decreasing.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Heaps properties

 1. There exists exactly one essentially complete binary tree with n nodes. height = log2 𝑛 .

 2. The root of a heap always contains its largest element.

 3. A node of a heap considered with all its descendants is also a heap.

 4. A heap can be implemented as an array by recording its elements in the topdown, left-to-

right fashion. It is convenient to store the heap’s elements in positions 1 through n of such an

array, leaving H[0] unused. In such a representation,

 a. the parental node keys will be in the first n/2 positions of the array, while the leaf keys will

occupy the last n/2 positions,

 b. the children of a key in the array’s parental position i (1 ≤ i ≤ n/2) will be in positions 2i and

2i + 1, and, correspondingly, the parent of a key in position i (2 ≤ i ≤ n) will be in position i/2.

 PARENT (i) return 𝑖/2
 LEFT (i) return 2i

 RIGHT (i) return 2i +1

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 There are two kinds of binary heaps: max-heaps and min-heaps.

 In both kinds, the values in the nodes satisfy a heap property, the specifics of which depend

on the kind of heap. In a max-heap, the max-heap property is that for every node i other than

the root, A[Parent (i)]≥ A[i]

 Thus, the largest element in a max-heap is stored at the root, and the subtree rooted at a node

contains values no larger than that contained at the node itself.

 A min-heap is organized in the opposite way, the min-heap property is that for every node i

other than the root, A[Parent (i)] ≤ A[i]

 The smallest element in a min-heap is at the root.

 For the heapsort algorithm , we use max-heaps , Min-heaps commonly implement priority

queues.

 The MAX-HEAPIFY procedure, runs in O(lg n) time, is the key to maintaining the max-heap

property.

 The BUILD-MAX-HEAP procedure, runs in linear time, produces a maxheap from an

unordered input array.

 The HEAPSORT procedure, runs in O(n lg n) time, sorts an array in place.

 The MAX-HEAP-INSERT, HEAP-EXTRACT-MAX, HEAP-INCREASE

-KEY, and HEAP-MAXIMUM procedures, run in O(lg n) time.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Maintaining the heap property

 In order to maintain the max-heap property, we call the procedure MAX-HEAPIFY.

 Its inputs are an array A and an index i into the array.

 When it is called, MAX-HEAPIFY assumes that the binary trees rooted at LEFT(i) and RIGHT(i)

are maxheaps, but that A[i] might be smaller than its children, thus violating the max-heap

property.

 MAX-HEAPIFY lets the value at A[i] “float down” in the max-heap so that the subtree rooted at

index i obeys the max-heap property.

 MAX-HEAPIFY(A, i)

1. l=LEFT(i)

2. r=RIGHT(i)

3. if l ≤A.heap-size and A[l] > A[i]

4. largest = l

5. else largest =i

6. if r≤ A.heap-size and A[r] > A[largest]

7. largest = r

8. if largest ≠ i

9. exchange A[i] with A[largest]

10. MAX-HEAPIFY(A, largest)

 Example: The action of MAX-HEAPIFY(A,2), where
A.heap-size=10

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Running time of MAX-HEAPIFY by the recurrence : T(n)≤ T(2n/3)+ Θ(1).
 The solution to this recurrence, by case 2 of the master theorem ,is T(n)=O(lg n).
 Alternatively, the running time of MAXHEAPIFY on a node of height h as O(h). h=lg n
 Exercises :illustrate the operation of MAX-HEAPIFY(A,3) on the array A= {27, 17, 3, 16, 13,

10, 1, 5, 7, 12, 4, 8, 9, 0}.

27

1

17

2

3

3

16

4

13

5

10

6

1

7

5

8

7
9

12

10

4

11

8

12

9

13

0

14

 MAX-HEAPIFY(A,3)
 l=LEFT(i) //6
 r=RIGHT(i) //7
 if l ≤A.heap-size and A[l] > A[i] //10>3
 largest = l //6
 exchange A[i] with A[largest]//A[3] with A[6]

10

3

 MAX-HEAPIFY(A, 6)
 l=LEFT(i) //12
 r=RIGHT(i) //13
 if l ≤A.heap-size and A[l] > A[i] //8>3
 largest = l //12
 if r≤ A:heap-size and A[r] > A[largest]//9>8
 largest = r //13
 exchange A[i] with A[largest] //A[6] with A[13]

3

9

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Building a heap

 We can use the procedure MAX-HEAPIFY in a bottom-up manner to convert an array

A[1…n], where n=A.length, into a max-heap.

 The elements in the subarray A[(Τ𝑛 2 +1).. n] are all leaves of the tree , so the procedure

BUILD-MAX-HEAP goes through the remaining nodes of the tree and runs MAX-HEAPIFY

on each one.

 BUILD-MAX-HEAP(A)

1. A.heap-size = A.length

2. for i = A.length/2 downto 1

3. MAX-HEAPIFY(A,i)

 Each call to MAX-HEAPIFY costs O(lg n) time,

 and BUILD MAX-HEAP makes O(n) such calls.

 Thus, the running time is O(n lg n).

 Example of the action of BUILD-MAX-HEAP.

A 1 2 3 4 5 6 7 8 9 10

4 1 3 2 16 9 10 14 8 7

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Exercises :Illustrate the operation of BUILD-MAX-HEAP on the
array A ={5, 3, 17, 10, 84, 19, 6, 22, 9}. 5

1

3

2
17

3

10

4

84

5

19

6

6

7

22

8

9

9

22 3
i

 BUILD-MAX-HEAP(A)

1. A.heap-size = A.length //9

2. for i = A.length/2 downto 1 //4-1

3. MAX-HEAPIFY(A,i)

10

19

17

84

84

5 ii

i

22

510

5 There are two methods of constructing a heap.

 The first is the bottom-up heap construction algorithm.

 It initializes the essentially complete binary tree with n

nodes by placing keys in the order given and then “heapifies” the tree as follows.

 Starting with the last parental node, the algorithm checks whether the parental dominance

holds for the key in this node.

 The alternative (and less efficient) algorithm constructs a heap by successive insertions of a

new key into a previously constructed heap; the top-down heap construction algorithm.

 First, attach a new node with key K in it after the last leaf of the existing heap.

 Then sift K up to its appropriate place in the new heap as follows.

 Compare K with its parent’s key: if it is greater than or equal to K, stop ;

 Otherwise, swap these two keys and compare K with its new parent.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 This insertion operation cannot require more key comparisons than the heap’s height. Since

the height of a heap with n nodes is log2 n, The time efficiency of insertion is in O(log2 n).

 Example: Inserting a key (10) into the heap constructed . The new key is sifted up via a swap

with its parent until it is not larger than its parent (or is in the root).

 Deleting the root’s key from a heap can be done with the
following algorithm.

 Maximum Key Deletion from a heap
 Step 1 Exchange the root’s key with the last key of the heap.
 Step 2 Decrease the heap’s size by 1.
 Step 3 “Heapify” the smaller tree by sifting root.
 Example: Deleting the root’s key from a heap. The key to be

deleted is swapped with the last key after which the smaller tree
is “heapified”

 The efficiency of deletion is determined by the number of key

comparisons needed to “heapify” the tree after the swap has been made

and the size of the tree is decreased by 1.

 Since this cannot require more key comparisons than twice the heap’s

height, the time efficiency of deletion is in O(log n) as well .

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Heapsort
 An interesting sorting algorithm discovered by J. W. J. Williams.
 This is a two-stage algorithm that works as follows.
 Stage 1 (heap construction): Construct a heap for a given array.
 Stage 2 (maximum deletions): Apply the root-deletion operation n - 1 times to the remaining

heap.
 The heapsort algorithm
 The heapsort algorithm starts by using BUILD-MAX-HEAP to build a max-heap on the input

array A[1…n], where n =A.length.
 Since the maximum element of the array is stored at the root A[1], we can put it into its correct

final position by exchanging it with A[n].
 Now discard node n from the heap—and we can do so by simply decrementing A.heap-size.
 All we need to do to restore the max-heap property, call MAX-HEAPIFY(A,1).
 The heapsort algorithm then repeats this process for the max-heap of size n-1 down to a heap

of size 2.
 HEAPSORT(A)
1. BUILD-MAX-HEAP(A)
2. for i = A.length downto 2
3. exchange A[1] with A[i]
4. A:heap-size = A:heap-size-1
5. MAX-HEAPIFY(A,1)

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 The HEAPSORT procedure takes time O(n lg n), since the call to BUILD-MAXHEAP takes time
O(n) and each of the n- 1 calls to MAX-HEAPIFY takes time O(lg n).

 Example: Sorting the array 2, 9, 7, 6, 5, 8 by heapsort
 BUILD-MAX-HEAP(A)

1 2 3 4 5 6

2 9 7 6 5 8

2 9 8 6 5 7

9 2 8 6 5 7

9 6 8 2 5 7
o for i = 6
o exchange A[1] with A[6]

7 6 8 2 5 9

o A:heap-size = A:heap-size-1

7 6 8 2 5

o MAX-HEAPIFY(A,1)

8 6 7 2 5

o for i = 5
o exchange A[1] with A[5]

5 6 7 2 8

o A:heap-size = A:heap-size-1

5 6 7 2

o MAX-HEAPIFY(A,1)

7 6 5 2

o for i = 4
o exchange A[1] with A[4]

2 6 5 7

o A:heap-size = A:heap-size-1

2 6 5

o MAX-HEAPIFY(A,1)

6 2 5

o for i = 3
o exchange A[1] with A[3]

5 2 6

o A:heap-size =
A:heap-size-1

5 2

o MAX-HEAPIFY(A,1)

5 2

o for i = 2
o exchange A[1] with A[2]

2 5

o A:heap-size =
A:heap-size-1

2M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Time complexity to find the minmum element in max-heap is Θ(n).

 We can’t perform binary search ,because its not BST and heaps need not be in sorted order.

 So we need to perform linear search on leaves(⌈𝑛∕2⌉ elements) to find minimum element.

 In linear search ⌈𝑛∕2⌉-1 comparisons so time complexity Θ(n).

 Similar for finding maximum element in min-heap, Θ(n).

 The minimum number of comparisons required to find the maximum in the min-heap and

minimum in max-heap is ⌈𝑛∕2⌉-1 .

 kth smallest element in a min-heap cannot go deeper than level k because the path from root

to that level goes through k-1 smaller elements.

 kth largest element in a max-heap cannot go deeper than level k because the path from root to

that level goes through k-1 larger elements.

 Applications of Heaps:

 Heap Sort: Heap Sort is one of the best sorting algorithms that use Binary

Heap to sort an array in O(N log N) time.

 Priority Queue: A priority queue can be implemented by using a heap .

 Graph Algorithms: The heaps are especially used in Graph Algorithms like

Dijkstra’s Shortest Path and Prim’s Minimum Spanning Tree.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Min Heap Max Heap

 In a Min-Heap the key present at the

parent node must be less than or equal to

the keys present at all of its children.

 In a Max-Heap the key present at the parent
node must be greater than or equal to the
keys present at all of its children.

 In a Min-Heap the minimum key element

present at the root.

 In a Max-Heap the maximum key element

present at the root.

 A Min-Heap uses the ascending priority A Max-Heap uses the descending priority.

 Find minimum O(1),maximum O(n) Find maximum O(1),minimum O(n)

 Insertion ,Deletion O(log n) Insertion ,Deletion O(log n)

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Balanced Search Trees
 It is a binary tree whose nodes contain elements of a set of orderable items, one element per node,

so that all elements in the left subtree are smaller than the element in the subtree’s root, and all the
elements in the right subtree are greater than it.

 This transformation is an example of the representation-change technique.
 What do we gain by such transformation compared to the straightforward array?
 We gain in the time efficiency of searching, insertion, and deletion, which are all in Θ(log n), but

only in the average case.
 In the worst case, these operations are in Θ(n) because the tree can degenerate into a severely

unbalanced one with its height equal to n - 1.
 To avoids its worst-case degeneracy. They have come up with two approaches .

 The first approach is of the instance-simplification variety: an unbalanced binary search tree is
transformed into a balanced one.

 Such trees are called self-balancing. An AVL tree requires the difference between the heights of the
left and right subtrees of every node never exceed 1.

 A red-black tree tolerates the height of one subtree being twice as large as the other subtree of the
same node.

 If an insertion or deletion of a new node creates a tree with a violated balance requirement, the tree
is restructured by special transformations called rotations that restore the balance required.

 In this section, we will discuss only AVL trees.
 Information about other types of binary search trees that rebalance via rotations,

including red-black trees and splay trees, can be found in Data Structure.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 The second approach is of the representation-change variety: allow more than one element in
a node of a search tree.

 Such trees are 2-3 trees, 2-3-4 trees, and more general and important B-trees.
 They differ in the number of elements admissible in a single node of a search tree, but all are

perfectly balanced.
 AVL Trees
 AVL trees were invented in 1962 by two Russian scientists, G. M. Adelson-Velsky and E. M.

Landis , after whom this data structure is named.
 DEFINITION An AVL tree is a binary search tree in which the balance factor of every node,

which is defined as the difference between the heights of the node’s left and right subtrees, is
either 0 or +1 or -1.

 Example : (a) AVL tree.(b) Binary search tree that is not an AVL tree.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 If an insertion of a new node makes an AVL tree unbalanced, we transform the tree by a

rotation.

 A rotation in an AVL tree is a local transformation of its subtree rooted at a node whose

balance has become either +2 or -2.

 If there are several such nodes, we rotate the tree rooted at the unbalanced node that is the

closest to the newly inserted leaf.

 There are only four types of rotations; in fact, two of them are mirror images of the other two.

➢ The first rotation type is called the single right rotation, or R-rotation.

 This rotation is performed after a new key is inserted into the left subtree of the left child of a

tree whose root had the balance of +1 before the insertion.
➢ The symmetric single left rotation, or L-rotation, is the mirror image of the single R-rotation.

 It is performed after a new key is inserted into the right subtree of the right child of a tree

whose root had the balance of -1 before the insertion. M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 The second rotation type is called the double left-right
rotation (LR-rotation).

 It is a combination of two rotations:we perform the L-rotation
of the left subtree of root r followed by the R-rotation of the
new tree rooted at r .

 It is performed after a new key is inserted into the right
subtree of the left child of a tree whose root had the balance
of +1 before the insertion.

 The double right-left rotation (RL-rotation) is the mirror image of
the double LR-rotation and is left for the exercises.

 General form of the R-rotation and LR-rotation in the AVL tree.
 A shaded node is the last one inserted. It can be either in the left

subtree or in the right subtree of the root’s grandchild.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Construction of an AVL tree for the list 5, 6, 8, 3, 2, 4, 7 by successive insertions.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Searching and insertion are Θ(log n) in the worst case.

 The operation of key deletion in an AVL tree is considerably more difficult than insertion, but
fortunately it turns out to be in the same efficiency class as insertion, i.e., logarithmic.

 The drawbacks of AVL trees are frequent rotations and the need to maintain balances for its
nodes.

 Q1. Which of the following binary trees are AVL trees?

 a: AVL Tree

0

1

0

-1

0

0

2

0

0 0

-2

0

0 0

 b: Not AVL Tree due to balance factor 2,-2

 c: Not AVL Tree as not BST

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Q2. For each of the following lists, construct an AVL tree by inserting their elements successively, starting
with the empty tree. a. 1, 2, 3, 4, 5, 6 b. 6, 5, 4, 3, 2, 1 c. 3, 6, 5, 1, 2, 4

 a. 1, 2, 3, 4, 5, 6
1

2

3
0

-1

-2

L(1)

2

1 3

4

5
0

-1

-2

-2
0

L(3)

2

1 4

53

6
0

-1

-1

0

-2

0

L(2)

4

52

61 3
0 0 0

0 -1

0

 b. 6, 5, 4, 3, 2, 1 6

5

4
0

+1

+2

R(6)

5

4 6

3

2
0

+1

+2

+2

0
R(4)

5

63

42

1

0

+1

+1

0

+2

0
R(5)

3

2 5

1 4 6
0 0 0

01

0

 c. 3, 6, 5, 1, 2, 4

3

6

5 0

+1

-2

RL(3) 5

3 6

1

2
0

-1

+2

+2

0 LR(3)

5

62

31

4
0

-10

-1 0

+2

LR(5)

3

2 5

1 4 6
0 0 0

+1 0

0M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 A 2-3 tree is a tree that can have nodes of two kinds: 2-nodes and 3-nodes.

 All its leaves must be on the same level.

 In other words, a 2-3 tree is always perfectly height-balanced: the length of a path from the

root to a leaf is the same for every leaf.

 Searching , insertion, and deletion are all in Θ(log n) in both the worst and average case.

 We consider a very important generalization of 2-3 trees, called B-trees .

 Ex : Construction of a 2-3 tree for the list 9, 5, 8, 3, 2, 4, 7

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

	Slide 1
	Slide 2
	Slide 3
	Slide 4: Transform-and-Conquer
	Slide 5: Heaps and Heapsort
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Balanced Search Trees
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

