
Algorithms

Chapter 6: Greedy Method

GATE CS Lectures

 by Monalisa
M

on
ali

sa
CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Section 5: Algorithms

 Searching, sorting, hashing. Asymptotic worst case time and space complexity. Algorithm design
techniques : greedy, dynamic programming and divide‐and‐conquer . Graph traversals, minimum
spanning trees, shortest paths

 Chapter 1:Algorithim Analysis:-Algorithm intro , Order of growth ,Asymptotic notation, Time
complexity, space complexity, Analysis of Recursive & non recursive program, Master theorem]

 Chapter 2:Brute Force:-Sequential search, Selection Sort and Bubble Sort , Radix sort, Depth first Search
and Breadth First Search.

 Chapter 3: Decrease and Conquer :- Insertion Sort, Topological sort,Binary Search .

 Chapter 4: Divide and conquer:-Min max problem , matrix multiplication ,Merge sort ,Quick Sort , Binary
Tree Traversals and Related Properties .

 Chapter 5: Transform and conquer:- Heaps and Heap sort, Balanced Search Trees.

 Chapter 6: Greedy Method:-knapsack problem , Job Assignment problem, Optimal merge, Hoffman
Coding, minimum spanning trees, Dijkstra’s Algorithm.

 Chapter 7: Dynamic Programming:-The Bellman-Ford algorithm ,Warshall’s and Floyd’s Algorithm ,Rod
cutting, Matrix-chain multiplication ,Longest common subsequence ,Optimal binary search trees

 Chapter 8: Hashing.

 Reference : Introduction to Algorithms by Thomas H. Cormen

 Introduction to the Design and Analysis of Algorithms, by Anany Levitin

 My Note

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Chapter 6: Greedy Method:-

 knapsack problem ,

 Job Sequencing with Deadlines,

 Optimal merge,

 Hoffman Coding,

 Minimum spanning trees,

 Dijkstra’s Algorithm.
M

on
ali

sa
CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Greedy Algorithms
 If a problem requires either minimum or maximum result then it’s a optimization problem .
 Greedy method , Dynamic Programming ,Branch and Bound are techniques used for optimization

problem .
 Algorithms for optimization problems typically go through a sequence of steps, with a set of choices

at each step.
 A greedy algorithm always makes the choice that looks best at the moment. That is, it makes a

locally optimal choice in the hope that this choice will lead to a globally optimal solution.
 The choice made must be:
 feasible, i.e., it has to satisfy the problem’s constraints.
 locally optimal, i.e., it has to be the best local choice among all feasible choices available on that

step.
 irrevocable, i.e., once made, it cannot be changed on subsequent steps of the algorithm.
 Algorithm Greedy (A,n)
 for i ← 1 to n
 {x ← Select (i) ;
 if feasible (x) then
 Solution=Solution +x;
 }
 Return (Solution);
 Time complexity of any problem ≥ O(n)

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Knapsack Problem
 Given n items of known weights w1, w2, . . . , wn and values v1, v2, . . . , vn

and a knapsack of capacity W, find the most valuable subset of the items that

fit into the knapsack. σ𝑖=1
𝑛 𝑤𝑖 𝑥𝑖 ≤W .

 x=how much included in W.

 Fractional knapsack problem 0 ≤ x ≤1

 0-1 knapsack problem x=0 or 1

 An example showing that the greedy strategy does not work for the 0-1 knapsack problem.
 (a) The thief must select a subset of the three items shown whose weight must not exceed 50

pounds.
 (b) The optimal subset includes items 2 and 3. Any solution with item 1 is suboptimal, even though

item 1 has the greatest value per pound.
 (c) For the fractional knapsack problem, taking the items in order of greatest value per pound yields

an optimal solution.
 Time Complexity O(n) M

on
ali

sa
CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Item Weight Value

1

2

3

18

15

10

25

24

15

 Ex 1 : Maximum capacity W=20.
 Greedyvalue : x1=1,x2=2/15,x3=0
 σ𝑖=1

𝑛 𝑤𝑖 𝑥𝑖= 18*1+15*2/15 +10*0=20
 σ𝑖=1

𝑛 𝑣𝑖 𝑥𝑖= 25*1+24*2/15+15*0=28.2
 Greedyweight : x1=0,x2=10/15,x3=1
 σ𝑖=1

𝑛 𝑤𝑖 𝑥𝑖= 18*0+15*10/15 +10*1=20
 σ𝑖=1

𝑛 𝑣𝑖 𝑥𝑖= 25*0+24*10/15+15*1=31
 Greedyvalue/weight : v1/w1 =25/18 =1.4 , v2/w2 =24/15 =1.6, v3/w3 = 15/10=1.5
 x1=0,x2=1,x3=1/2
 σ𝑖=1

𝑛 𝑤𝑖 𝑥𝑖= 18*0+15*1 +10*1/2=20
 σ𝑖=1

𝑛 𝑣𝑖 𝑥𝑖= 25*0+24*1+15*1/2=31.5

 Ex 2 :

 Greedyvalue/weight :

 v1/w1 =12/2 =6 , v2/w2 =10/1 =10, v3/w3 = 20/3=6.7 , v4/w4 = 15/2=7.5

 x1=0,x2=1,x3=2/3, x4=1

 σ𝑖=1
𝑛 𝑤𝑖 𝑥𝑖= 2*0+1*1 +3*2/3+2*1=5

 σ𝑖=1
𝑛 𝑣𝑖 𝑥𝑖= 12*0+10*1+20*2/3+15*1

 0+10+13.33+15=38.33

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Job Sequencing with Deadlines
 The sequencing of jobs on a single processor with deadline constraints is called as Job

Sequencing with Deadlines.

 You are given a set of jobs/process/task.

 Each job has a defined deadline(d) and some profit(p) associated with it.

 The profit of a job is given only when that job is completed within its deadline.

 Uniprocessor. Processor takes one unit of time to complete a job.

 Non preemptive , All arrival time 0.

 Greedy Algorithm is adopted to determine how the next job is selected for an optimal solution.

 Step-01: Sort all the given jobs in decreasing order of their profit.

 Step-02: Check the value of maximum deadline.

 Draw a Gantt chart where maximum time on Gantt chart is the value of maximum deadline.

 Step-03: Pick up the jobs one by one in decreasing order of their profit.

 Put the job on Gantt chart as far as possible from 0 ensuring that the job gets completed before

its deadline.

 If n=number of jobs ,d=maximum deadline then time complexity O(n*d)

 If maximum deadline =n then time complexity O(n2)

 Solution space=2n [subset possible with n elements]

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Ex 3: n=9

 Which jobs are left out? ,Max profit?
Jobs j1 j2 j3 j4 j5 j6 j7 j8 j9

Deadlines 7 2 5 3 4 5 2 7 3

Profits 15 20 30 18 18 10 23 16 25j2 j7 j9 j5 j3 j1 j8

0 1 2 3 4 5 6 7

 j4 ,j6 jobs are left out.

 Max profit=15+20+30+18+23+16+25= 147

 Ex 2: n=8 Jobs j1 j2 j3 j4 j5 j6 j7 j8

Deadlines 3 3 4 5 2 5 4 3

Profits 18 5 10 15 25 40 9 12

j8 j5 j1 j4 j6

0 1 2 3 4 5

 Total profits=12+25+18+15+40=110

 Other sequences are =(j5,j1,j8 ,j4,j6),(j5,j8,j1,j6,j4)..

Jobs j1 j2 j3 j4

Deadlines 2 1 2 1

Profits 115 20 30 80

j4 j1

0 1 2

 Total profits= 115+80=195

 Ex 1: n=4

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Optimal Merge Pattern

 When two or more sorted files are to be merged altogether to form a single file by using two-

way merging method, the minimum computations are done to reach this file are known

as Optimal Merge Pattern.

 Ex 1:Let A={4,8,10,11,15} , B={3,7,12,18,21,22}

 After 2-way merging ={3,4 ,7,8,10,11,12,15,18,21,22}

 Number of record movement =n+m [n & m are file size]

 To merge two lists m+n-1 comparisons requires in worst case

 |A|=5 ,|B|=6 ,Number of record movement =5+6=11

 Ex 2:Let f1=5 ,f2=18,f3=10 [number of records]
f1:5 f2:18

23 f3:10

33

 Number of record movement =(f1+f2)+f3=23+33=56
 f1+ (f2+f3) =33+28=61 ,(f1+f3)+f2=15+33=48

f1:5 f2:10

15 f3:18

33

 Solution space for merging n files=n!

 Total number of pattern possible=n!

 Total number of record movement =σ𝑖=1
𝑛 𝑓𝑖𝑑𝑖

 d=depth from root to the file

 f=number of records in file

 5*2+10*2+18*1=10+20+18=48

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Ex 3: n=8, {f1=8 , f2= 6 , f3=12 , f4=9 , f5=3 , f6=20 , f7=5 , f8=30}

 f5=3, f7=5 , f2= 6 , f1=8 , f4=9 , f3=12 , f6=20 , f8=30

f5:3 f7:5

8

f2:6 f1:8

14f4:9

17

f3:12

26f6:20

37

f8:30

56

93

 Total number of record movement =3*4+5*4+6*4+8*4
+9*3+12*3+20*2+30*2=251

 Algorithm Tree(list ,n)
 { For i=1 to n-1 do
 { Pt: new treenode;
 (Pt → lchild) = least(list);
 (Pt → rchild) = least(list);
 (Pt → weight) = ((Pt → lchild) → weight)

 + ((Pt → rchild) → weight);
 Insert (list , Pt);
 } }
 The for loop is executed in n-1 times.
 If the list is kept in increasing order according to the weight value in the roots, then

least (list) needs only O(1) time and insert (list, t) can be performed in O(n) time.
 Hence, the total time taken is O (n2).
 If the list is represented as a minheap , then least (list) and insert (list, t) can be

done in O (log n) time.
 The computing time for the tree is O (n log n).

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Huffman Trees and Codes

 Huffman codes compress data very effectively: savings of 20% to 90% depending on data .
 We consider the data to be a sequence of characters.
 Huffman’s greedy algorithm uses a table giving how often each character occurs (i.e., its

frequency) to build up an optimal way of representing each character as a binary string.
 Suppose we have a 100,000-character data file that we wish to store compactly.
 We observe that only 6 different characters appear.

 Here, we consider the problem of designing a binary character code (or code)

 In which each character is represented by a unique binary string, which we call a codeword.

 If we use a fixed-length code, we need 3 bits to represent 6 characters: This method requires

300,000 bits to code the entire file.

 A variable-length code can do considerably better than a fixed-length code, by giving frequent

characters short codewords and infrequent characters long codewords.

 This code requires (45*1+ 13* 3+12*3+16*3+ 9*4+5*4)*1,000 = 224,000 bits to represent

the file, a savings of approximately 25%.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Prefix codes
 We consider here only codes in which no codeword is also a prefix of some other codeword.
 Such codes are called prefix-free (or simply prefix) codes.
 A binary tree whose leaves are the given characters provides one such representation.
 We interpret the binary codeword for a character as the simple path from the root to that

character, where 0 means “go to the left child” and 1 means “go to the right child.”

 Each leaf is labeled with a character and its frequency of occurrence.

 Each internal node is labeled with the sum of the frequencies of the leaves in its subtree.

 (a) The tree corresponding to the fixed-length code a = 000, . . . ,f = 101.

 (b) The tree corresponding to the optimal prefix code a = 0, b = 101, . . . , f = 1100.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 If C is the set of characters, then the tree for an optimal prefix code has exactly |C| leaves, one for
each letter of the alphabet, and exactly |C|- 1 internal nodes .

 Let the attribute c.freq denote the frequency of c in the file and let dT(c) denote the depth of c’s leaf
in the tree also the length of the codeword for character c.

 The number of bits required to encode a file is B(T)=σc∈𝐶 c.freq∗dT(c) the cost of the tree T .
 Constructing a Huffman Tree/code
 Huffman invented a greedy algorithm for an optimal prefix code called a Huffman code.
 When we merge two objects, the result is a new object whose frequency is the sum of the

frequencies of the two objects that were merged.
 The codeword for a letter is the sequence of edge labels on the path from the root to the letter.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Line 2 initializes the min-priority queue Q with the characters in C .

 The for loop in lines 3–8 repeatedly extracts the two nodes x and y of lowest frequency from

the queue, replacing them in the queue with a new node z representing their merger.

 The node z has x as its left child and y as its right child

 After n-1 mergers, line 9 returns the one node left in the queue , which is the root of the tree.

 To analyze the running time of Huffman’s algorithm, assume that Q as a binary min-heap .

 For a set C of n characters, Q in O(n) time using the BUILD-MIN-HEAP procedure.

 The for loop in lines 3–8 executes exactly n- 1 times, and since each heap operation requires

time O(lg n), the loop contributes O(n lg n) to the running time.

 Thus, the total running time of HUFFMAN on a set of n characters is O(n lg n).

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 EX : Consider the five-symbol alphabet {A, B, C, D, _} with the following occurrence
frequencies in a text made up of these symbols:

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 ISRO2020-34

 Huffman tree is constructed for the following data :{A,B,C,D,E} with frequency

{0.17,0.11,0.24,0.33 and 0.15} respectively. 100 00 01101 is decoded as

 (A) BACE (B)CADE (C)BAD (D) CADD

 Sol: In increase order B:0.11 ,E:0.15 ,A:0.17 ,C:0.24 ,D:0.33

B:0.11 E:0.15

0.26A:0.17 C:0.24

0.41

D:0.33

0.59

1.00
0 1

0 1 0 1

0 1

 Prefix code :

 A=00

 B=100

 C=01

 D=11

 E=101

 100 00 01 101

 BACE

 Ans: (A) BACE

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Minimum Spanning Trees
 A spanning tree of an undirected connected graph is its connected acyclic subgraph (i.e., a tree) that

contains all the vertices of the graph.

 If such a graph has weights assigned to its edges, a minimum spanning tree is its spanning tree of

the smallest weight, where the weight of a tree is defined as the sum of the weights on all its edges.

 The minimum spanning tree problem is the problem of finding a minimum spanning tree for a

given weighted connected graph.

 Prim’s algorithm

 Prim’s algorithm operates much like Dijkstra’s algorithm for finding shortest paths in a graph.

 Prim’s algorithm constructs a minimum spanning tree through a sequence of expanding subtrees.

 The initial subtree in such a sequence consists of a single vertex from the set of the graph’s vertices.

 On each iteration , the algorithm expands the current tree in the greedy manner by simply attaching

to it the nearest smallest weight vertex not in that tree.

 The algorithm stops after all the graph’s vertices have been included.

 Since the algorithm expands a tree by exactly one vertex on each of its

iterations, the total number of such iterations is n - 1, where n is the number

of vertices in the graph.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 ALGORITHM Prim(G)
 //Input: A weighted connected graph G = (V, E)
 //Output: ET , the set of edges composing a minimum spanning tree of G
 VT ← {v0} //the set of tree vertices can be initialized with any vertex
 ET ← ∅
 for i ← 1 to |V | - 1 do
 find a minimum-weight edge e∗ = (v∗, u∗) among all the edges (v, u)
 such that v is in VT and u is in V – VT

 VT ← VT ∪ {u∗}
 ET ← ET ∪ {e∗}
 return ET

 If a graph is represented by its weight matrix and the priority queue is implemented as an
unordered array ,the algorithm’s running time will be in 𝜃(|V |2).

 On each of the |V | - 1 iterations, the array implementing the priority queue is traversed to find and
delete the minimum and then to update.

 We can also implement the priority queue as a min-heap.
 Deletion of the smallest element from and insertion of a new element into a min-heap of size n are

O(log n) operations .

 If a graph is represented by its adjacency lists and the priority queue is implemented
as a min-heap, the running time of the algorithm is in O(|E| log |V |).

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Ex 1: The root vertex is a. Shaded edges are in the tree being grown, and black vertices are in

the tree.

 Kruskal’s Algorithm

 Joseph Kruskal, discovered this algorithm when he was a second-year graduate student .

 Kruskal’s algorithm looks at a minimum spanning tree of a weighted connected graph G = (V,

E) as an acyclic subgraph with |V | - 1 edges for which the sum of the edge weights is the

smallest.

 Consequently, the minimum spanning tree is always acyclic but are not necessarily connected

on the intermediate stages of the algorithm.

 The algorithm begins by sorting the graph’s edges in nondecreasing order of their weights.

 Then, starting with the empty subgraph, it scans this sorted list, adding

the next edge on the list to the current subgraph if such an inclusion does

not create a cycle and simply skipping the edge otherwise.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 ALGORITHM Kruskal(G)

 //Input: A weighted connected graph G =(V, E)

 //Output: ET , the set of edges composing a minimum spanning tree of G

 Sort E in nondecreasing order of the edge weights w(e1) ≤ . . . ≤ w(e|E|)

 ET ← ∅; ecounter ← 0 //initialize the set of tree edges and its size
 k ← 0 //initialize the number of processed edges
 while ecounter < |V | - 1 do

 k ← k + 1
 if ET ∪ {ek} is acyclic
 ET ← ET ∪ {ek};
 ecounter ← ecounter + 1;
 return ET
 With an efficient union-find algorithm, the running time of Kruskal’s algorithm will be

dominated by the time needed for sorting the edge weights of a given graph.
 Hence, with an efficient sorting algorithm, the time efficiency of Kruskal’s algorithm will be

in O(|E| log |E|).
 Observing that |E| < |V|2, we have lg |E| = O(lg |V|) , and so we can restate

the running time of Kruskal’s algorithm as O(|E| lg |V|).

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Ex 1: Shaded edges belong to the forest
being grown.

 The algorithm considers each edge in
sorted order by weight. An arrow points
to the edge under consideration at each
step of the algorithm.

 Shorted edges:
 {1,2,2,4,4,6,7,7,8,8,9,10,11,14}

 Ex 2: Prim’s and Kruskal’s MST

 Shorted edges: {1,2,3,4,4,5,5,6,6,8}

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Number of Spanning Trees in connected, undirected graph

 Let G be a connected graph with |V| vertices then spanning tree contain |V|-1 edges.

 Circuit rank : number of edges need to delate for forming a spanning tree=|E|-|V|+1

 Number of spanning trees possible= |E|C|V|-1 [if no cycle present in graph]

 Number of spanning trees ≤ nn-2 [if graph is complete then nn-2]

 Kirchhoff's theorem:

 STEP 1: Create Adjacency Matrix for the given graph.

 STEP 2: Replace all the diagonal elements with the degree of nodes.

 STEP 3: Replace all non-diagonal 1’s with -1.

 STEP 4: Calculate co-factor for any element.

 STEP 5: The cofactor that you get is the total number of spanning tree for that graph

 Cofactor of C11=(-1)1+1*M11

 =(-1+18-1)- (3+3+2)

 =16-8=8

 8 spanning trees possible

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Number of Spanning Trees in connected, weighted, undirected graph

 If all weights are distinct then one minimum spanning tree.

 If equal weights are present then based on how many equal weights and cycles multiple

spanning tree possible.

 Prim’s and Kruskal will generate same MST if all weights are unique.

 If graph have equal edges then both may generate different MST .but total cost will be same .

 Q: Consider a graph whose vertices are present in a plane with int coordinate (x,y),1≤ x ≤ n ,

1≤ y ≤ n ,n>2 {(x1,y1) &(x2,y2)} are adjacent if and only if | x1-x2| ≤ 1, | y1-y2| ≤ 1. The cost

of such an edge is distance between them . Compute the weight of minimum cost spanning

tree of such a graph for a value of n .

 d= 𝜘1 − 𝑥2
2 + 𝑦1 − 𝑦2

2

.
(1,1)

.
(2,1)

.
(3,1)

.
(1,2)

.
(2,2)

.
(3,2)

.
(1,3)

.
(2,3)

.
(3,3)

1 1

1

1

1 1

1

1
1 1

1

1
2

2 2

2

2
2 2 2

. . .

. . .

. . .

1 1

1
1 1

1 1 1
 Cost of MST=8

 n2-1 M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Growing a minimum spanning tree

 This greedy strategy is captured by the following generic method, which grows the minimum

spanning tree one edge at a time.

 Prior to each iteration, A is a subset of some minimum spanning tree.

 At each step, we determine an edge (u,v) that we can add to A without violating this invariant,

in the sense that A ∪ {(u,v)} is also a subset of a minimum spanning tree.

 We call such an edge a safe edge for A, since we can add it safely to A .

 GENERIC-MST(G, w)

1. A=∅

2. while A does not form a spanning tree

3. find an edge (u,v) that is safe for A

4. A= A ∪ {(u,v)}

5. return A

 A cut (S, V- S) of an undirected graph G =(V,E) is a partition of V .

 An edge (u,v) ∈ E crosses the cut (S, V- S) if one of its endpoints is in S and

the other is in V- S.

 We say that a cut respects a set A of edges if no edge in A crosses the cut.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 An edge is a light edge crossing a cut if its weight is the minimum of any edge crossing cut.

 Ex 1 : Black vertices are in the set S, and white vertices

are in V - S.

 The edges crossing the cut are those connecting

white vertices with black vertices.

 The edge (d, c) is the unique light edge crossing the cut.

 A subset A of the edges is shaded; note that the cut (S, V- S)

respects A, since no edge of A crosses the cut.

 Theorem : Let G=(V, E) be a connected, undirected graph with a real-valued weight function w

defined on E. Let A be a subset of E that is included in some minimum spanning tree for G, let (S,

V-S) be any cut of G that respects A, and let (u,v) be a light edge crossing (S,V-S). Then, edge (u,v)

is safe for A.

 Proof : Black vertices are in S, and white vertices are in V - S.

 The edges in A are shaded, and (u,v) is a light edge crossing

the cut (S,V- S).

 The edge (x, y) is an edge on the unique simple path p from

u to v in T .

 To form a minimum spanning tree 𝑇′that contains (u,v), remove

the edge (x, y) from T and add the edge (u,v).

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Single-Source Shortest Paths
 In a shortest-paths problem, we are given a weighted, directed graph G=(V,E) with weight function

w:E→ R mapping edges to real-valued weights.
 The weight w(p) of path p ={v0,v1,…..vk} is the sum of the weights of its constituent edges:

 w (p)= σ𝑖=1
𝑘 𝜔 𝑣1−1, 𝑣𝑖 .

 We define the shortest-path weight 𝛿 𝑢, 𝑣 from u to v by
 𝛿 𝑢, 𝑣 = {min (w(p) :u →v} if there is a path from u to v
 {∞ otherwise .
 A shortest path from vertex u to vertex v is any path p with weight w (p)= 𝛿 𝑢, 𝑣 .
 The breadth-first-search algorithm is a shortest-paths algorithm that works on unweighted graphs,

that is, graphs in which each edge has unit weight.
 Variants
 single-source shortest-paths problem: given a graph G=(V,E)we want to find a shortest path from a

given source vertex s ∈ V to each vertex v ∈ V .
 Single-destination shortest-paths problem: Find a shortest path to a given destination vertex t

from each vertex . By reversing the direction of each edge in the graph, we can reduce this problem
to a single-source problem.

 Single-pair shortest-path problem: Find a shortest path from u to v for given
vertices u and v.

 All-pairs shortest-paths problem: Find a shortest path from u to v for every
pair of vertices u and v.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Dijkstra’s algorithm, is a greedy algorithm, and the Floyd Warshall algorithm, which finds shortest
paths between all pairs of vertices, is a dynamic-programming algorithm.

 Negative-weight edges: Dijkstra’s algorithm, assume that all edge weights in the input graph are
nonnegative, But Bellman-Ford algorithm, allow negative-weight edges in the input graph and
produce a correct answer as long as no negative-weight cycles are reachable from the source.

 If there is a negative weight cycle on some path from s to v, we define 𝛿 s, 𝑣 =- ∞ .
 If there is such a negative-weight cycle, the algorithm can detect and report its existence.
 Representing shortest paths:We not only compute shortest-path weights, but the vertices on

shortest paths as well.
 We represent shortest paths similarly to how we represented breadth-first trees.
 The shortest-paths algorithms set the 𝜋 attributes so that the chain of predecessors originating at a

vertex v runs backwards along a shortest path from s to v.
 A predecessor v.𝜋 is either another vertex or NIL.
❑ Ex: A weighted, directed graph with two shortest-path weights from source s.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Relaxation

 For each vertex v ∈ V, we maintain an attribute v.d, which is an upper bound on the weight of

a shortest path from source s to v . We call v.d a shortest-path estimate.

 We initialize the shortest-path estimates and predecessors by the following O(V) time

procedure:

 INITIALIZE-SINGLE-SOURCE (G, s)

1. for each vertex v ∈ G.V

2. v.d = ∞
3. v.𝜋 = NIL

4. s.d=0

 The process of relaxing an edge (u,v) consists of testing whether we can improve the shortest

path to v found so far by going through u and, if so, updating v.d and v.𝜋.

 The following code performs a relaxation step on edge (u,v) in O(1) time:

 RELAX(u,v,w)

1. if v.d > u.d+w(u,v)

2. v.d=u.d+w(u,v)

3. v.𝜋 =u

❑ Ex :Relaxing an edge (u,v) with weight w(u,v)=2

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Dijkstra’s algorithm:

 Dijkstra’s algorithm solves the single-source shortest-paths problem on a nonnegative weighted,

directed graph G=(V,E).
 Dijkstra’s algorithm maintains a set S of vertices whose final shortest-path weights from the source s

have already been determined.

 The algorithm repeatedly selects the vertex u ∈ V - S with the minimum shortest-path estimate, adds

u to S, and relaxes all edges leaving u.

 In the following implementation, we use a min-priority queue Q of vertices, keyed by their d values.

 DIJKSTRA(G, w, s)
1. INITIALIZE-SINGLE-SOURCE (G, s)
2. S=∅
3. Q= G.V
4. while Q≠ ∅
5. u= EXTRACT-MIN(Q)
6. S=S ∪ {u}
7. for each vertex v ∈G . Adj[u]
8. RELAX{u ,v ,w }
 Because Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex

in V - S to add to set S, we say that it uses a greedy strategy .

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 The time efficiency of Dijkstra’s algorithm depends on the data structures used for implementing the
priority queue and for representing an input graph itself.

 O(V2) for graphs represented by their weight matrix and the priority queue implemented as an
unordered array.

 For graphs represented by their adjacency lists and the priority queue implemented as a min-heap, it
is in O(|E| log |V |).

 Ex :The execution of Dijkstra’s algorithm

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Tree vertices Remaining vertices Illustration

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

	Slide 1
	Slide 2
	Slide 3
	Slide 4: Greedy Algorithms
	Slide 5: Knapsack Problem
	Slide 6
	Slide 7: Job Sequencing with Deadlines
	Slide 8
	Slide 9: Optimal Merge Pattern
	Slide 10
	Slide 11: Huffman Trees and Codes
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Minimum Spanning Trees
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Growing a minimum spanning tree
	Slide 25
	Slide 26: Single-Source Shortest Paths
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

