
Algorithms

Chapter 7: Dynamic Programming

GATE CS Lectures

 by Monalisa
M

on
ali

sa
CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Section 5: Algorithms

 Searching, sorting, hashing. Asymptotic worst case time and space complexity. Algorithm design
techniques : greedy, dynamic programming and divide‐and‐conquer . Graph traversals, minimum
spanning trees, shortest paths

 Chapter 1:Algorithim Analysis:-Algorithm intro , Order of growth ,Asymptotic notation, Time
complexity, space complexity, Analysis of Recursive & non recursive program, Master theorem]

 Chapter 2:Brute Force:-Sequential search, Selection Sort and Bubble Sort , Radix sort, Depth first Search
and Breadth First Search.

 Chapter 3: Decrease and Conquer :- Insertion Sort, Topological sort,Binary Search .

 Chapter 4: Divide and conquer:-Min max problem , matrix multiplication ,Merge sort ,Quick Sort , Binary
Tree Traversals and Related Properties .

 Chapter 5: Transform and conquer:- Heaps and Heap sort, Balanced Search Trees.

 Chapter 6: Greedy Method:-knapsack problem , Job Assignment problem, Optimal merge, Hoffman
Coding, minimum spanning trees, Dijkstra’s Algorithm.

 Chapter 7: Dynamic Programming:-The Bellman-Ford algorithm ,Warshall’s and Floyd’s Algorithm ,Rod
cutting, Matrix-chain multiplication ,Longest common subsequence ,Optimal binary search trees

 Chapter 8: Hashing.

 Reference : Introduction to Algorithms by Thomas H. Cormen

 Introduction to the Design and Analysis of Algorithms, by Anany Levitin

 My Note

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Chapter 7: Dynamic Programming:-

 The Bellman-Ford algorithm

 Warshall’s and Floyd’s Algorithm ,

 Rod cutting

 Matrix-chain multiplication

 Longest common subsequence

 Optimal binary search trees
M

on
ali

sa
CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Dynamic Programming

 The word “programming” in the name of this technique stands for “planning” and does not

refer to computer programming

 Dynamic programming, like the divide-and-conquer method, solves problems by combining

the solutions to subproblems.

 Dynamic programming applies when the subproblems overlap—that is, when subproblems

share subsubproblems.

 We apply dynamic programming to optimization problems.

 Such problems can have many possible solutions.

 Each solution has a value, and we wish to find a solution with the optimal (minimum or

maximum) value.

 When developing a dynamic-programming algorithm, we follow a sequence of four steps:

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution, typically in a bottom-up fashion.

4. Construct an optimal solution from computed information.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Greedy Method Dynamic Programming

1. Feasibility

In a greedy Algorithm, we make

whatever choice seems best at the

moment in the hope that it will lead to

global optimal solution.

In Dynamic Programming we make decision

at each step considering current problem and

solution to previously solved sub problem to

calculate optimal solution .

2. Optimality

In Greedy Method, sometimes there is

no such guarantee of getting Optimal

Solution.

It is guaranteed that Dynamic Programming

will generate an optimal solution as it

generally considers all possible cases and

then choose the best.

3.Recursion

A greedy method follows the problem

solving heuristic of making the locally

optimal choice at each stage.

A Dynamic programming is an algorithmic

technique which is usually based on a

recurrent formula that uses some previously

calculated states.
4.Space

complexity

It is more efficient in terms of space as it

never look back or revise previous

choices

It requires Dynamic Programming table for

scace and it increases it’s space complexity.

5.Time

complexity

Greedy methods are generally faster. For

example, Dijkstra’s shortest

path algorithm takes O(ELogV)

Dynamic Programming is generally slower.

For example, Bellman Ford algorithm takes

O(VE) time.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

https://www.geeksforgeeks.org/bellman-ford-algorithm-simple-implementation/

 The Bellman-Ford algorithm

 The Bellman-Ford algorithm solves the single-source shortest-paths problem in which edge

weights may be negative.

 The Bellman-Ford algorithm returns a boolean value indicating whether or not there is a negative-

weight cycle that is reachable from the source.

 If there is such a cycle, the algorithm indicates that no solution exists.

 If there is no such cycle, the algorithm produces the shortest paths and their weights.
 The algorithm relaxes edges, progressively decreasing an estimate v.d on the weight of a shortest

path from the source s to each vertex v∈ V until it achieves the actual shortest-path weight 𝛿 𝑢, 𝑣 .
 The algorithm returns TRUE if and only if the graph contains no negative-weight cycles that are

reachable from the source.
 BELLMAN-FORD(G , w , s)
1. INITIALIZE-SINGLE-SOURCE(G,s)
2. for i=1 to |G.V|-1
3. for each edge (u , v) ∈ G.E
4. RELAX(u ,v , w)
5. for each edge (u , v) ∈ G.E
6. if v. d > u . d+ w(u,v)
7. return FALSE
8. return TRUE

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 The Bellman-Ford algorithm runs in time O(VE), since the initialization in line 1 takes ‚O(V) time,
each of the |V|- 1 passes over the edges in lines 2–4 takes O(E) time, and the for loop of lines 5–7
takes O(E) time.

 Ex :The source is vertex s. if edge (u,v) is shaded, then v.𝜋 =u .
 (b)–(e) The situation after each successive pass over the edges. The d and 𝜋 values in part (e) are the

final values.
 The Bellman-Ford algorithm returns TRUE in this example.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Transitive Closure
 Warshall ’s algorithm for computing the transitive closure of a directed graph

and Floyd’s algorithm for the all-pairs shortest-paths problem.

 Warshall ’s Algorithm

 The transitive closure of a directed graph with n vertices can be defined as

the n × n boolean matrix T = {tij}, in which the element in the ith row and the

jth column is 1 if there exists a nontrivial path from the ith vertex to the jth

vertex; otherwise, tij is 0.

 Stephen Warshall, discovered it,so name is Warshall Algorithm

 Ex : (a) Digraph ,(b)Its adjacency matrix, (c) Its transitive closure

 Rule for changing zeros in Warshall’s Algorithm

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 ALGORITHM Warshall(A[1..n, 1..n])

 //Input: The adjacency matrix A of a digraph with n vertices

 //Output: The transitive closure of the digraph

1. R(0) ← A

2. for k ← 1 to n do

3. for i ← 1 to n do

4. for j ← 1 to n do

5. R(k)[i, j] ← R(k-1)[i, j] or (R(k-1)[i, k] and R(k-1)[k, j])

6. return R(n)

 Its time efficiency is only Θ(n3)

 Application of Warshall’s algorithm to the digraph

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

All-Pairs Shortest Paths

 The all-pairs shortest paths problem asks to find the distances—i.e., the lengths of the

shortest paths from each vertex to all other vertices .

 We can solve an all-pairs shortest-paths problem by running a single-source shortest-paths

algorithm |V| times, once for each vertex as the source. If all edge weights are nonnegative, we

can use Dijkstra’s algorithm.

 If we use the linear-array implementation of the min-priority queue,the running time O(|V|3).

 The binary min-heap implementation of the min-priority queue,running time of O(|V||E| lg |V|)

 In Dynamic Programming Floyd’s Algorithm Used for all-pairs shortest paths problem.

 It is called Floyd’s algorithm after its co-inventor Robert W.Floyd.

 It is applicable to both undirected and directed weighted graphs provided that they do not

contain a cycle of a negative length.

 It is convenient to record the lengths of shortest paths

in an n × n matrix D called the distance matrix.

 We define dij
(k) recursively by

 dij
(k) = min {dij

(k-1) , dik
(k-1) + dkj

(k-1)} for k≥1, dij
(0) = wij.

 Underlying idea of Floyd’s algorithm.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 ALGORITHM Floyd(W [1..n, 1..n])

 //Input:The weight matrix W of a graph with no negative-length cycle

 //Output: The distance matrix of the shortest paths lengths

 D (0) ← W

 for k ← 1 to n do

 for i ← 1 to n do

 for j ← 1 to n do

 D(k)[i,j]←min{D(k-1)[i,j],D(k-1)[i,k]+D(k-1)[k,j]}

 return D(n)

 The running time is determined by the triply nested for loops,

the algorithm runs in time Θ(n3).

 Application of Floyd’s algorithm

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Ex 2:

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Rod cutting

 The rod-cutting problem :Given a rod of length n inches and a table of prices pi for i=1,2,3..n,
determine the maximum revenue rn obtainable by cutting up the rod and selling the pieces.

 We can cut up a rod of length n in 2n-1 different ways, since we have an independent option of
cutting, or not cutting, at distance i inches from the left end, for i=1,2,…n-1.

 If an optimal solution cuts the rod into k pieces, for some 1≤ k≤ n, then an optimal
decomposition n=i1+i2+….+ik of the rod into pieces of lengths i1,i2,….,ik provides maximum
corresponding revenue
rn= p

1
+ p

2
 +…..+ p

k
.

 rn=max (pn , r1+rn-1 , r2+rn-2,….,rn-1+r1) or rn=max
1≤i≤n

 (pi+rn-i)

 Example: A sample price table for rods. Each rod of length i inches earns pi dollars of revenue.
 Length i |1 2 3 4 5 6 7 8 9 10
 --
 Price pi |1 5 8 9 10 17 17 20 24 30
 r1=1 , 1=1 no cuts r2=5 , 2=2 no cuts
 r3=8 , 3=3 no cuts r4=10, 4=2+2
 r5=13, 5=2+3 r6=17 , 6=6 no cuts
 r7=18, 7=1+6,2+2+3 r8=22 , 8=2+6
 r9=25, 9=3+6 r10=30 , 10=10 no cuts

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 BOTTOM-UP-CUT-ROD(p , n)

1. let r[0…n] be a new array

2. r[0]= 0

3. for j=1 to n

4. q=-∞
5. for i =1 to j

6. q = max(q, p[i]+r[j-i])

7. r[j]= q

8. return r[n]

 Line 1 creates a new array r[0 …n] in which to save the results of the subproblems,

 Line 2 initializes r[0] to 0, since a rod of length 0 earns no revenue.

 Lines 3–6 solve each subproblem of size j , for j= 1, 2,….. n, in order of increasing size.

 Line 7 saves in r[j] the solution to the subproblem of size j .

 Finally, line 8 returns r[n], which equals the optimal value rn.

 The running time of procedure BOTTOM-UP-CUT-ROD is Θ(n2),

due to its doubly-nested loop structure.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Matrix-chain multiplication

 We are given a sequence (chain) {A1,A2,…. An} of n matrices to be multiplied,
 Matrix multiplication is associative, and so all parenthesizations yield the same product.
 MATRIX-MULTIPLY(A, B)
1. if A . columns ≠ B . Rows
2. error “incompatible dimensions”
3. else let C be a new A.rows ×B.columns matrix
4. for i= 1 to A.rows
5. for j = 1 to B.columns
6. cij = 0
7. for k =1 to A.columns
8. cij = cij + aik . bkj
9. return C
 We can multiply two matrices A and B only if they are compatible:The number of columns of

A must equal the number of rows of B.
 If A=p× q matrix and B=q× r matrix, the resulting matrix C =p× r matrix.
 A product of matrices is fully parenthesized if it is either a single matrix or the product of two

fully parenthesized matrix products, surrounded by parentheses.
 If n=Number of Matrices-1

 Number of distinct parenthesizations possible =
2n𝑐

𝑛

𝑛+1
 [Catalan number]

 For ex , {A1,A2, A3 ,A4}, then five distinct ways:

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 (A1(A2(A3 A4))) , (A1((A2 A3) A4)) , ((A1A2) (A3 A4)), ((A1(A2 A3)) A4) , (((A1A2) A3)A4).

 Ex: consider the problem of a chain {A1,A2, A3} of three matrices.the dimensions of the

matrices are 10× 100, 100× 5, and 5× 50, respectively.

 ((A1,A2) A3):10*100*5=5000 scalar multiplications to compute 10 ×5 matrix product A1A2,

plus another 10*5*50= 2500 scalar multiplications to multiply this matrix by A3, total of 7500.

 (A1(A2A3):100*5*50+10*100*50=75000 scalar multiplications .

 We shall implement the tabular, bottom-up method in the procedure MATRIXCHAIN-

ORDER.

 This procedure assumes that matrix Ai has dimensions pi-1× pi for i=1,2,….n. Its input is a

sequence p ={p0,p1,…..pn}, where p.length=n+1.

 The procedure uses an auxiliary table m[1..n,1…n] for storing the m[i,j] costs and another

auxiliary table s[1…n-1,2…n] that records which index of k achieved the optimal cost in

computing m[i,j] . We shall use the table s to construct an optimal solution.

 The m table uses only the main diagonal and upper triangle,

and the s table uses only the upper triangle.

 m[i, j] =0 if i=j,

 = min
𝑖≤𝑘<𝑗

 {m[i,k]+ m[k+1,j]+pi-1pkpj} if i<j.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 MATRIX-CHAIN-ORDER(p)
1. n= p.length- 1
2. let m[1..n,1..n] and s[1..n-1,2..n] be new tables
3. for i= 1 to n
4. m[i,i]= 0
5. for l = 2 to n
6. for i = 1 to n-l +1
7. j= i + l-1 , m[i, j]=∞
8. for k= i to j-1
9. q = m[i,k]+m[k+1,j]+pi-1 pk pj
10. if q < m[i, j]
11. m[i, j] =q , s[i, j] = k
12. return m and s
• The nested loop structure of MATRIX-CHAIN-ORDER yields a

running time of O(n3) for the algorithm .
• The algorithm requires Θ(n2) space to store the m and s tables.

Matrix A1 A2 A3 A4

Dimension 3×2 2 ×4 4×2 2×5

 m[1,2]=3*2*4=24

j

1 2 3 4 m

1

2 i

3

4

j

2 3 4 s

1

2 i

3

0

0

0

0

24

16

40

28

36

58 1

2

3

1

3

3

 m[2,3]=2*4*2=16

 m[3,4]=4*2*5=40

 m[1,3]=Min

 {k=1: m[1,1]+m[2,3] + p0

p1p3 =0+16+3*2*2=28,

 k=2: m[1,2]+m[3,3]+p0

p2p3=24+0+3*4*2=48}=

28
 m[2,4]=Min{k=2: m[2,2]+m[3,4] + p1 p2 p4=0+40+2*4*5=80,

 k=3: m[2,3]+m[4,4]+p1 p3 p4=16+0+2*2*5=36}=36

 m[1,4]=Min{k=1: m[1,1]+m[2,4] + p0 p1 p4=0+36+3*2*5=66,
 k=2: m[1,2]+m[3,4]+p0 p2 p4=24+40+3*4*5=124
 k=3: m[1,3]+m[4,4] + p0 p3 p4=28+0+3*2*5=58}=58

 (A1A2A3A4)=((A1A2A3)A4)=((A1(A2 A3)) A4)

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Matrix A1 A2 A3 A4 A5 A6

 Dimension 30×35 35×15 15×5 5×10 10×20 20× 25

 The m and s tables computed by MATRIX-CHAIN-ORDER for n = 6

 (A1A2A3A4A5A6) = ((A1(A2A3))A4A5A6)= ((A1(A2A3))((A4A5)A6))

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 A substring is a contiguous sequence of characters within a string.
 A subsequence is a sequence that can be derived from the given sequence by deleting some

or no elements without changing the order of the remaining elements.
 A string of length n has 2n-1 different possible subsequences since we do not consider the subsequence

with length 0.
 Biological applications often need to compare the DNA of two (or more) different organisms.
 Given two sequences X and Y , we say that a sequence Z is a common subsequence of X and

Y if Z is a subsequence of both X and Y .
 For example, if X=(A,B,C,B,D,A,B) and Y=(B,D,C,A,B,A), the sequence (B,C,A) is a

common subsequence of both X and Y .
 The sequence (B,C,A) is not a longest common subsequence (LCS) of X and Y , since it has

length 3 and the sequence (B,C,B,A),(B,D,A,B) which are also common to both X and Y , has
length 4.

 In the longest-common-subsequence problem, we are given two sequences X=(x1,x2,….xm)
and Y=(y1,y2,….yn) and wish to find a maximum length common subsequence of X and Y .

 Optimal substructure of an LCS
 Let X=(x1,x2…xm) and Y=(y1,y2...yn) be sequences, and let Z =(z1,z2,….zk) be any LCS of X

and Y.
1. If xm=yn, then zk=xm=yn and Zk-1 is an LCS of Xm-1 and Yn-1.
2. If xm≠yn, then zk≠ xm implies that Z is an LCS of Xm-1 and Y .
3. If xm≠yn, then, zk≠ yn implies that Z is an LCS of X and Yn-1.

Longest common subsequence

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

• Ex: Lets take X=(ABBAB) and Y=(ACBAB)
• LCS (“ABBAB” , “ACBAB”)
• If x5=y5, then z4=x5=y5=B and Z3 is an LCS of X4 and Y4.
• LCS (“ABBA” , “ACBA”)
• If x4=y4, then z3=x4=y4=A and Z2 is an LCS of X3 and Y3.
• LCS (“ABB” , “ACB”)
• If x3=y3, then z2=x3=y3=B and Z1 is an LCS of X2 and Y2.
• LCS (“AB” , “AC”)
• If x2≠y2, then z1≠ x2 implies that Z is an LCS of X1 and Y .
• LCS (“A” , “AC”)
• If x1≠y2, then, z1≠ y2 implies that Z is an LCS of X and Y1.
• LCS (“A” , “A”)
• If x1=y1, then z1=x1=y1 =A.
• LCS=“ABAB”
 A recursive solution
 Let us define c[i, j] to be the length of an LCS of the sequences Xi and Yj .
 c[i,j]= {0 if i=0 or j=0,
 {c[i-1,j-1]+1 if i,j >0 and xi=yj,
 {max(c[i,j-1],c[i-1,j]) if i,j >0 and xi ≠ yj.
 Computing the length of an LCS
 It stores the c[i,j] values in a table c[0..m,0..n] and the table b[1…m,1..n]

help us construct an optimal solution.
 It computes the entries in row-major order.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 LCS-LENGTH(X,Y)
1. m=X.length ,n=Y.length
2. let b[1..m,1..n] and c[0..m,0..n] be new tables
3. for i = 1 to m
4. c[i,0]=0
5. for j =0 to n
6. c[0, j]=0
7. for i=1 to m
8. for j=1 to n
9. if xi = = yj
10. c[i,j]= c[i-1,j-1]+1
11. b[i,j]= “ ”
12. elseif c[i-1,j]≥ c[i,j-1]
13. c[i,j]= c[i-1,j]
14. b[i,j]= “↑”
15. else c[i,j]= c[i,j-1]
16. b[i,j]= “← ”
17. return c and b

 Ex:The tables produced sequences
X=(A,B,C,B,D,A,B) and Y=(B,D,C,A,B,A)

j 0 1 2 3 4 5 6

i yj B D C A B A

0 xi 0 0 0 0 0 0 0

1 A 0

2 B 0

3 C 0

4 B 0

5 D 0

6 A 0

7 B 0

↑ 0 ↑ 0 ↑ 0 1 ← 1 1

1 ← 1 ← 1 ↑ 1
2 ← 2

↑ 1 ↑ 1 2 ← 2 ↑ 2 ↑ 2

1 ↑ 1 ↑ 2 ↑ 2 3 ← 3

↑ 1 2 ↑ 2 ↑ 2 ↑ 3 ↑ 3

↑ 1 ↑ 2 ↑ 2 3 ↑ 3 4

1 ↑ 2 ↑ 2 ↑ 3 4 ↑ 4

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 The running time of the procedure is Θ(mn), each table entry takes Θ (1) time to compute.
 Constructing an LCS
 We simply begin at b[m,n] and trace through the table by following the arrows.
 Whenever we encounter a “ ” in entry b[i,j] , it implies that xi = yj is an element of the LCS

that LCS-LENGTH found.
 With this method, we encounter the elements of this LCS in reverse order.
 The following recursive procedure prints out an LCS of X and Y in the proper , forward order.
 The procedure takes time O(m+n), since it decrements at least one of i and j in each recursive

call.
 PRINT-LCS(b, X,i, j)
1. if i == 0 or j == 0
2. return
3. if b[i, j] == “ ”
4. PRINT-LCS(b, X, i-1, j-1)
5. print xi
6. elseif b[i,j]= =“↑”
7. PRINT-LCS(b, X, i-1, j)
8. else PRINT-LCS(b, X, i, j-1)

 This procedure prints

 BCBA,BCAB,BDAB

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

j 0 1 2 3 4 5 6 7 8 9

i yj 0 1 0 1 1 0 1 1 0

0 xi 0 0 0 0 0 0 0 0 0 0

1 1 0

2 0 0

3 0 0

4 1 0

5 0 0

6 1 0

7 0 0

8 1 0

↑ 0 1 ← 1 1 1 ← 1 1 1 ← 1

1 ↑ 1 2 ← 2 ← 2 2 ← 2 ← 2 2

1 ↑ 1 2 ↑ 2 ↑ 2 3 ← 3 ← 3 3

↑ 1 2 ↑ 2 3 3
↑ 3

4 4 ← 4

1 ↑ 2 3
↑ 3 ↑ 3

4 ↑ 4 ↑ 4 5

↑ 1 2 ↑ 3
4 4 ↑ 4

5 5
↑ 5

1 ↑ 2
3 ↑ 4 ↑ 4 5 ↑ 5 ↑ 5 6

↑ 1 2 ↑ 3
4 5 ↑ 5 6 6 ↑ 6

 LCS= 100110

 101011

 101101

 010101

 101010

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Optimal Binary Search Tree
 We are given a sequence K={k1,k2…kn} of n distinct keys in sorted order, and we wish to build

a binary search tree from these keys.

 For each key ki, we have a probability pi . Some searches may be for values not in K, and so

we also have n+1 “dummy keys” d0,d1,d2…dn representing values not in K.

 In particular, d0 represents all values less than k1, dn represents all values greater than kn, and

for i=1,2…,n-1, the dummy key di represents all values between ki and ki+1.

 For each dummy key di, we have a probability qi that a search will correspond to di.

 Every search is either successful (finding some key ki) or unsuccessful (finding some dummy

key di), and so we have σi=1
𝑛 𝑝𝑖 + σi=1

𝑛 𝑞𝑖=1.

 For a given set of probabilities, we wish to construct a binary search tree whose expected

search cost is smallest. We call such a tree an optimal binary search tree

 The total number of binary search trees with n keys is equal to the nth Catalan number,

 C(n)=
1

𝑛+1
 2nCn for n>0.

 Two binary search trees for a set of n = 5 keys with the following probabilities:

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 (a) A binary search tree with expected search cost 2.80.

 (b) A binary search tree with expected search cost 2.75.

This tree is optimal.

 A recursive solution:

 Let us define e[i,j] as the expected cost of searching an
optimal binary search tree containing the keys
ki….kj.Ultimately, we wish to compute e[1,n].

 e[i,j]= {qi-1 if j=i-1

 { min
𝑖≤𝑟≤𝑗

{e[i,r-1]+e[r+1,j]+w(i,j)} if i≤j.

 We also use a table root[i,j] , for recording the root of
the subtree.

 We will need one other table for efficiency.

 Rather than compute the value of w[i, j] from scratch
every time we store these values in a table
w[1…n+1,0..n].

 For the base case, w[i,i-1]=qi-1 for 1≤i ≤n+1.

 w[i,j]=w[i,j-1]+pj+qj For j≥ I

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 OPTIMAL-BST (p,q,n)

1. let e[1…n+1,0..n],w[1…n+1,0…n],and

root[1…n,1…n] be new tables

2. for i=1 to n + 1

3. e[i,i-1]=qi-1

4. w[i,i-1]=qi-1

5. for l =1 to n

6. for i =1 to n- l + 1

7. j = i+ l- 1

8. e[i,j]=∞
9. w[i,j]=w[i,j-1]+pj+qj

10. for r = i to j

11. t= e[i,r-1]+e[r+1,j]+ w[i, j]

12. if t < e[i , j]

13. e[i,j]= t

14. root[i,j]=r

15. return e and root

• The OPTIMAL-BST procedure takes Θ(n3) time

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

	Slide 1
	Slide 2
	Slide 3
	Slide 4: Dynamic Programming
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Transitive Closure
	Slide 9
	Slide 10: All-Pairs Shortest Paths
	Slide 11
	Slide 12
	Slide 13: Rod cutting
	Slide 14
	Slide 15: Matrix-chain multiplication
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Longest common subsequence
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Optimal Binary Search Tree
	Slide 25
	Slide 26

