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 Section 5: Algorithms

 Searching, sorting, hashing. Asymptotic worst case time and space complexity. Algorithm design 
techniques : greedy, dynamic programming and divide‐and‐conquer . Graph traversals, minimum 
spanning trees, shortest paths

 Chapter 1:Algorithim Analysis:-Algorithm intro , Order of growth ,Asymptotic notation, Time 
complexity, space complexity, Analysis of Recursive & non recursive program, Master theorem ]

 Chapter 2:Brute Force:-Sequential search, Selection Sort and Bubble Sort , Radix sort, Depth first Search 
and Breadth First Search.

 Chapter 3: Decrease and Conquer :- Insertion Sort, Topological sort,Binary Search .

 Chapter 4: Divide and conquer:-Min max problem , matrix multiplication ,Merge sort ,Quick Sort , Binary 
Tree Traversals and Related Properties .

 Chapter 5: Transform and conquer:- Heaps and Heap sort, Balanced Search Trees.

 Chapter 6: Greedy Method:-knapsack problem , Job Assignment problem, Optimal merge, Hoffman 
Coding, minimum spanning trees, Dijkstra’s Algorithm.

 Chapter 7: Dynamic Programming:-The Bellman-Ford algorithm ,Warshall’s and Floyd’s Algorithm ,Rod 
cutting, Matrix-chain multiplication ,Longest common subsequence ,Optimal binary search trees

 Chapter 8: Hashing.

 Reference : Introduction to Algorithms by Thomas H. Cormen

 Introduction to the Design and Analysis of Algorithms, by Anany Levitin

 My Note
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 Chapter 7: Dynamic Programming:-

 The Bellman-Ford algorithm 

 Warshall’s and Floyd’s Algorithm ,

 Rod cutting 

 Matrix-chain multiplication 

 Longest common subsequence 

 Optimal binary search trees
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Dynamic Programming 

 The word “programming” in the name of this technique stands for “planning” and does not 

refer to computer programming

 Dynamic programming, like the divide-and-conquer method, solves problems by combining 

the solutions to subproblems. 

 Dynamic programming applies when the subproblems overlap—that is, when subproblems 

share subsubproblems. 

 We apply dynamic programming to optimization problems. 

 Such problems can have many possible solutions. 

 Each solution has a value, and we wish to find a solution with the optimal (minimum or 

maximum) value. 

 When developing a dynamic-programming algorithm, we follow a sequence of four steps:

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution, typically in a bottom-up fashion.

4. Construct an optimal solution from computed information.
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Greedy Method Dynamic Programming

1. Feasibility

In a greedy Algorithm, we make 

whatever choice seems best at the 

moment in the hope that it will lead to 

global optimal solution.

In Dynamic Programming we make decision 

at each step considering current problem and 

solution to previously solved sub problem to 

calculate optimal solution .

2. Optimality

In Greedy Method, sometimes there is 

no such guarantee of getting Optimal 

Solution.

It is guaranteed that Dynamic Programming 

will generate an optimal solution as it 

generally considers all possible cases and 

then choose the best.

3.Recursion

A greedy method follows the problem 

solving heuristic of making the locally 

optimal choice at each stage.

A Dynamic programming is an algorithmic 

technique which is usually based on a 

recurrent formula that uses some previously 

calculated states.
4.Space 

complexity    

             

It is more efficient in terms of space as it 

never look back or revise previous 

choices

It requires Dynamic Programming table for 

scace and it increases it’s space complexity.

5.Time 

complexity    

      

Greedy methods are generally faster. For 

example, Dijkstra’s shortest 

path algorithm takes O(ELogV)

Dynamic Programming is generally slower. 

For example, Bellman Ford algorithm takes 

O(VE) time.
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 The Bellman-Ford algorithm 

 The Bellman-Ford algorithm solves the single-source shortest-paths problem in which edge 

weights may be negative. 

 The Bellman-Ford algorithm returns a boolean value indicating whether or not there is a negative-

weight cycle that is reachable from the source. 

 If there is such a cycle, the algorithm indicates that no solution exists. 

 If there is no such cycle, the algorithm produces the shortest paths and their weights.
 The algorithm relaxes edges, progressively decreasing an estimate v.d on the weight of a shortest 

path from the source s to each vertex  v∈ V until it achieves the actual shortest-path weight 𝛿 𝑢, 𝑣 . 
 The algorithm returns TRUE if and only if the graph contains no negative-weight cycles that are 

reachable from the source. 
 BELLMAN-FORD(G , w , s)
1. INITIALIZE-SINGLE-SOURCE(G,s)
2. for i=1 to |G.V|-1
3.  for each edge (u , v) ∈ G.E 
4.        RELAX(u ,v , w)
5. for each edge (u , v) ∈ G.E
6.  if v. d > u . d+ w(u,v)
7.         return FALSE
8. return TRUE 
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 The Bellman-Ford algorithm runs in time O(VE), since the initialization in line 1 takes ‚O(V) time, 
each of the |V|- 1 passes over the edges in lines 2–4 takes O(E) time, and the for loop of lines 5–7 
takes O(E) time.

 Ex :The source is vertex s. if edge (u,v) is shaded, then v.𝜋 =u . 
 (b)–(e) The situation after each successive pass over the edges. The d and 𝜋 values in part (e) are the 

final values. 
 The Bellman-Ford algorithm returns TRUE in this example.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS



Transitive Closure 
 Warshall ’s algorithm for computing the transitive closure of a directed graph 

and Floyd’s algorithm for the all-pairs shortest-paths problem. 

 Warshall ’s Algorithm 

 The transitive closure of a directed graph with n vertices can be defined as 

the n × n boolean matrix T = {tij}, in which the element in the ith row and the 

jth column is 1 if there exists a nontrivial path from the ith vertex to the jth 

vertex; otherwise, tij is 0. 

 Stephen Warshall, discovered it,so name is Warshall Algorithm

 Ex : (a) Digraph ,(b)Its adjacency matrix, (c) Its transitive closure

 Rule for changing zeros in Warshall’s Algorithm 
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 ALGORITHM Warshall(A[1..n, 1..n])

 //Input: The adjacency matrix A of a digraph with n vertices

 //Output: The transitive closure of the digraph

1. R(0) ← A

2. for k ← 1 to n do

3.  for i ← 1 to n do

4.        for j ← 1 to n do

5.   R(k)[i, j] ← R(k-1)[i, j] or (R(k-1)[i, k] and R(k-1)[k, j])

6. return R(n) 

 Its time efficiency is only Θ(n3) 

 Application of Warshall’s algorithm to the digraph
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All-Pairs Shortest Paths 

 The all-pairs shortest paths problem asks to find the distances—i.e., the lengths of the 

shortest paths from each vertex to all other vertices .

 We can solve an all-pairs shortest-paths problem by running a single-source shortest-paths 

algorithm |V| times, once for each vertex as the source. If all edge weights are nonnegative, we 

can use Dijkstra’s algorithm. 

 If we use the linear-array implementation of the min-priority queue,the running time  O(|V|3). 

 The binary min-heap implementation of the min-priority queue,running time of O(|V||E| lg |V|) 

 In Dynamic Programming Floyd’s Algorithm Used for all-pairs shortest paths problem. 

 It is called Floyd’s algorithm after its co-inventor Robert W.Floyd. 

 It is applicable to both undirected and directed weighted graphs provided that they do not 

contain a cycle of a negative length.

 It is convenient to record the lengths of shortest paths                                                                

in an n × n matrix D called the distance matrix.

 We define dij
(k) recursively by 

 dij
(k) = min {dij

(k-1) , dik
(k-1) + dkj

(k-1)} for k≥1, dij
(0) = wij.

 Underlying idea of Floyd’s algorithm. 
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 ALGORITHM Floyd(W [1..n, 1..n])

 //Input:The weight matrix W of a graph with no negative-length cycle

 //Output: The distance matrix of the shortest paths lengths

 D (0) ← W 

 for k ← 1 to n do

     for i ← 1 to n do

  for j ← 1 to n do

   D(k)[i,j]←min{D(k-1)[i,j],D(k-1)[i,k]+D(k-1)[k,j]}

 return D(n) 

 The running time is determined by the triply nested for loops,                                                    

the algorithm runs in time Θ(n3).

 Application of Floyd’s algorithm 
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 Ex 2:
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Rod cutting 

 The rod-cutting problem :Given a rod of length n inches and a table of prices pi for i=1,2,3..n, 
determine the maximum revenue rn obtainable by cutting up the rod and selling the pieces. 

 We can cut up a rod of length n in 2n-1 different ways, since we have an independent option of 
cutting, or not cutting, at distance i inches from the left end, for i=1,2,…n-1.

 If an optimal solution cuts the rod into k pieces, for some 1≤ k≤ n, then an optimal 
decomposition n=i1+i2+….+ik of the rod into pieces of lengths i1,i2,….,ik provides maximum 
corresponding revenue
rn= p

1
+ p

2
 +…..+ p

k
.

 rn=max (pn , r1+rn-1 , r2+rn-2,….,rn-1+r1) or rn=max
1≤i≤n

 (pi+rn-i)

 Example: A sample price table for rods. Each rod of length i inches earns pi dollars of revenue.
 Length i |1    2 3      4 5      6 7      8 9     10
 ------------------------------------------------------------------
 Price pi |1    5 8      9 10    17 17    20 24   30
 r1=1 , 1=1 no cuts r2=5 , 2=2 no cuts
 r3=8 , 3=3 no cuts r4=10, 4=2+2
 r5=13, 5=2+3  r6=17 , 6=6 no cuts
 r7=18, 7=1+6,2+2+3 r8=22 , 8=2+6
 r9=25, 9=3+6  r10=30 , 10=10 no cuts
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 BOTTOM-UP-CUT-ROD(p , n)

1. let r[0…n] be a new array

2. r[0]= 0

3. for j=1 to n

4.  q=-∞
5.  for i =1 to j

6.        q = max(q, p[i]+r[j-i])

7.      r[j]= q

8. return r[n] 

 Line 1 creates a new array r[0 …n] in which to save the results of the subproblems, 

 Line 2 initializes r[0] to 0, since a rod of length 0 earns no revenue. 

 Lines 3–6 solve each subproblem of size j , for j= 1, 2,….. n, in order of increasing size. 

 Line 7 saves in r[j] the solution to the subproblem of size j . 

 Finally, line 8 returns r[n], which equals the optimal value rn.

 The running time of procedure BOTTOM-UP-CUT-ROD is Θ(n2),                                          

due to its doubly-nested loop structure. 
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Matrix-chain multiplication

 We are given a sequence (chain) {A1,A2,…. An} of n matrices to be multiplied, 
 Matrix multiplication is associative, and so all parenthesizations yield the same product. 
 MATRIX-MULTIPLY(A, B)
1. if A . columns ≠ B . Rows
2.  error “incompatible dimensions”
3. else let C be a new A.rows ×B.columns matrix
4.       for i= 1 to A.rows
5.   for j = 1 to B.columns
6.        cij = 0
7.       for k =1 to A.columns
8.            cij = cij + aik . bkj
9. return C 
 We can multiply two matrices A and B only if they are compatible:The number of columns of 

A must equal the number of rows of B.
 If A=p× q matrix and B=q× r matrix, the resulting matrix C =p× r matrix.
 A product of matrices is fully parenthesized if it is either a single matrix or the product of two 

fully parenthesized matrix products, surrounded by parentheses. 
 If n=Number of Matrices-1

 Number of distinct parenthesizations possible =
2n𝑐

𝑛

𝑛+1
 [Catalan number]

 For ex , {A1,A2, A3 ,A4}, then five distinct ways:
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 (A1(A2( A3 A4))) , (A1((A2 A3) A4)) , ((A1A2) ( A3 A4)), ((A1(A2 A3)) A4) , (((A1A2) A3 )A4). 

 Ex: consider the problem of a chain {A1,A2, A3} of three matrices.the dimensions of the 

matrices are 10× 100, 100× 5, and 5× 50, respectively.

 ((A1,A2) A3 ):10*100*5=5000 scalar multiplications to compute 10 ×5 matrix product A1A2, 

plus another 10*5*50= 2500 scalar multiplications to multiply this matrix by A3, total of 7500.

 (A1(A2A3):100*5*50+10*100*50=75000 scalar multiplications .

 We shall implement the tabular, bottom-up method in the procedure MATRIXCHAIN-

ORDER. 

 This procedure assumes that matrix Ai has dimensions pi-1× pi for i=1,2,….n. Its input is a 

sequence p ={p0,p1,…..pn}, where p.length=n+1. 

 The procedure uses an auxiliary table m[1..n,1…n] for storing the m[i,j] costs and another 

auxiliary table s[1…n-1,2…n] that records which index of k achieved the optimal cost in 

computing m[i,j] . We shall use the table s to construct an optimal solution. 

 The m table uses only the main diagonal and upper triangle,                                                   

and the s table uses only the upper triangle.

 m[i, j] =0    if i=j,

    = min
𝑖≤𝑘<𝑗

 {m[i,k]+ m[k+1,j]+pi-1pkpj} if i<j.
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 MATRIX-CHAIN-ORDER(p)
1. n= p.length- 1
2. let m[1..n,1..n] and s[1..n-1,2..n] be new tables
3. for i= 1 to n
4.  m[i,i]= 0
5. for l = 2 to n 
6.       for i = 1 to n-l +1
7.   j= i + l-1 , m[i, j]=∞
8.   for k= i to j-1
9.     q = m[i,k]+m[k+1,j]+pi-1 pk pj
10.       if q < m[i, j] 
11.         m[i, j] =q , s[i, j] = k
12. return m and s
• The nested loop structure of MATRIX-CHAIN-ORDER yields a 

running time of O(n3) for the algorithm .
• The algorithm requires Θ(n2) space to store the m and s tables.

Matrix A1 A2 A3 A4

Dimension 3×2 2 ×4 4×2 2×5 

 m[1,2]=3*2*4=24 

j

1 2 3 4 m

1

2 i

3

4

j

2 3 4 s

1

2 i

3

0

0

0

0

24

16

40

28

36

58 1

2

3

1

3

3

 m[2,3]=2*4*2=16 

 m[3,4]=4*2*5=40

 m[1,3]=Min

 {k=1: m[1,1]+m[2,3] + p0 

p1p3 =0+16+3*2*2=28, 

 k=2: m[1,2]+m[3,3]+p0 

p2p3=24+0+3*4*2=48}=

28
 m[2,4]=Min{k=2: m[2,2]+m[3,4] + p1 p2 p4=0+40+2*4*5=80, 

                     k=3: m[2,3]+m[4,4]+p1 p3 p4=16+0+2*2*5=36}=36

 m[1,4]=Min{k=1: m[1,1]+m[2,4] + p0 p1 p4=0+36+3*2*5=66, 
                     k=2: m[1,2]+m[3,4]+p0 p2 p4=24+40+3*4*5=124
                     k=3: m[1,3]+m[4,4] + p0 p3 p4=28+0+3*2*5=58}=58

 (A1A2A3A4)=((A1A2A3)A4)=((A1(A2 A3)) A4)  
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 Matrix A1  A2  A3  A4  A5  A6 

 Dimension      30×35      35×15      15×5       5×10      10×20     20× 25

 The m and s tables computed by MATRIX-CHAIN-ORDER for n = 6 

  

  

 

 (A1A2A3A4A5A6) = ((A1(A2A3))A4A5A6)= ((A1(A2A3))((A4A5)A6)) 
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 A substring is a contiguous sequence of characters within a string.
 A subsequence is a sequence that can be derived from the given sequence by deleting some 

or no elements without changing the order of the remaining elements.
 A string of length n has 2n-1 different possible subsequences since we do not consider the subsequence 

with length 0.
 Biological applications often need to compare the DNA of two (or more) different organisms.
 Given two sequences X and Y , we say that a sequence Z is a common subsequence of X and 

Y if Z is a subsequence of both X and Y . 
 For example, if X=(A,B,C,B,D,A,B) and Y=(B,D,C,A,B,A), the sequence (B,C,A) is a 

common subsequence of both X and Y . 
 The sequence (B,C,A) is not a longest common subsequence (LCS) of X and Y , since it has 

length 3 and the sequence (B,C,B,A),(B,D,A,B) which are also common to both X and Y , has 
length 4. 

 In the longest-common-subsequence problem, we are given two sequences X=(x1,x2,….xm) 
and Y=(y1,y2,….yn) and wish to find a maximum length common subsequence of X and Y . 

 Optimal substructure of an LCS 
 Let X=(x1,x2…xm) and Y=(y1,y2...yn) be sequences, and let Z =(z1,z2,….zk) be any LCS of X 

and Y.
1. If xm=yn, then zk=xm=yn and Zk-1 is an LCS of Xm-1 and Yn-1.
2. If xm≠yn, then zk≠ xm implies that Z is an LCS of Xm-1 and Y .
3. If xm≠yn, then, zk≠ yn implies that Z is an LCS of X and Yn-1.

Longest common subsequence 
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• Ex: Lets take X=(ABBAB) and Y=(ACBAB)
• LCS (“ABBAB” , “ACBAB”) 
• If x5=y5, then z4=x5=y5=B and Z3 is an LCS of X4 and Y4.
• LCS (“ABBA” , “ACBA”)
• If x4=y4, then z3=x4=y4=A and Z2 is an LCS of X3 and Y3.
• LCS (“ABB” , “ACB”) 
• If x3=y3, then z2=x3=y3=B and Z1 is an LCS of X2 and Y2.
• LCS (“AB” , “AC”) 
• If x2≠y2, then z1≠ x2 implies that Z is an LCS of X1 and Y .
• LCS (“A” , “AC”) 
• If x1≠y2, then, z1≠ y2 implies that Z is an LCS of X and Y1.
• LCS (“A” , “A”) 
• If x1=y1, then z1=x1=y1 =A.
• LCS=“ABAB”
 A recursive solution 
 Let us define c[i, j] to be the length of an LCS of the sequences Xi and Yj .
 c[i,j]= {0   if i=0 or j=0,
  {c[i-1,j-1]+1  if i,j >0 and xi=yj,
   {max(c[ i,j-1],c[i-1,j]) if i,j >0 and xi ≠ yj.
 Computing the length of an LCS
 It stores the c[i,j] values in a table c[0..m,0..n] and the table b[1…m,1..n]                             

help us construct an optimal solution. 
 It computes the entries in row-major order.
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 LCS-LENGTH(X,Y)
1. m=X.length ,n=Y.length
2. let b[1..m,1..n] and c[0..m,0..n] be new tables
3. for i = 1 to m
4.  c[i,0]=0
5. for j =0 to n
6.  c[0, j]=0
7. for i=1 to m
8.      for j=1 to n
9.   if xi = = yj
10.         c[i,j]= c[i-1,j-1]+1
11.       b[i,j]= “   ”
12.  elseif c[i-1,j]≥ c[i,j-1]
13.      c[i,j]= c[i-1,j] 
14.         b[i,j]= “↑”
15.  else c[i,j]= c[i,j-1]  
16.        b[i,j]= “← ”
17. return c and b 

 Ex:The tables produced sequences 
X=(A,B,C,B,D,A,B) and Y=(B,D,C,A,B,A)

j 0 1 2 3 4 5 6

i yj B D C A B A

0 xi 0 0 0 0 0 0 0

1 A 0

2 B 0

3 C 0

4 B 0

5 D 0

6 A 0

7 B 0

↑ 0 ↑ 0 ↑ 0 1 ← 1 1

1 ← 1 ← 1 ↑ 1
2 ← 2

↑ 1 ↑ 1 2 ← 2 ↑ 2 ↑ 2

1 ↑ 1 ↑ 2 ↑ 2 3 ← 3

↑ 1 2 ↑ 2 ↑ 2 ↑ 3 ↑ 3

↑ 1 ↑ 2 ↑ 2 3 ↑ 3 4

1 ↑ 2 ↑ 2 ↑ 3 4 ↑ 4
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 The running time of the procedure is Θ(mn), each table entry takes Θ (1) time to compute.
 Constructing an LCS 
 We simply begin at b[m,n] and trace through the table by following the arrows. 
 Whenever we encounter a “    ” in entry b[i,j] , it implies that xi = yj is an element of the LCS 

that LCS-LENGTH found. 
 With this method, we encounter the elements of this LCS in reverse order.
 The following recursive procedure prints out an LCS of X and Y in the proper , forward order.
 The procedure takes time O(m+n), since it decrements at least one of i and j in each recursive 

call. 
 PRINT-LCS(b, X,i, j)
1. if i == 0 or j == 0 
2.  return
3. if b[i, j] == “   ”
4.  PRINT-LCS(b, X, i-1, j-1)
5.  print xi
6. elseif b[i,j]= =“↑”
7.  PRINT-LCS(b, X, i-1, j)
8. else PRINT-LCS(b, X, i, j-1)

 This procedure prints 

 BCBA,BCAB,BDAB 
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j 0 1 2 3 4 5 6 7 8 9

i yj 0 1 0 1 1 0 1 1 0

0 xi 0 0 0 0 0 0 0 0 0 0

1 1 0

2 0 0

3 0 0

4 1 0

5 0 0

6 1 0

7 0 0

8 1 0

↑ 0 1 ← 1 1 1 ← 1 1 1 ← 1

1 ↑ 1 2 ← 2 ← 2 2 ← 2 ← 2 2

1 ↑ 1 2 ↑ 2 ↑ 2 3 ← 3 ← 3 3

↑ 1 2 ↑ 2 3 3
↑ 3

4 4 ← 4

1 ↑ 2 3
↑ 3 ↑ 3

4 ↑ 4 ↑ 4 5

↑ 1 2 ↑ 3
4 4 ↑ 4

5 5
↑ 5

1 ↑ 2
3 ↑ 4 ↑ 4 5 ↑ 5 ↑ 5 6

↑ 1 2 ↑ 3
4 5 ↑ 5 6 6 ↑ 6

 LCS= 100110

  101011

  101101

  010101

  101010
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Optimal Binary Search Tree
 We are given a sequence K={k1,k2…kn} of n distinct keys in sorted order, and we wish to build 

a binary search tree from these keys. 

 For each key ki, we have a probability pi . Some searches may be for values not in K, and so 

we also have n+1 “dummy keys” d0,d1,d2…dn representing values not in K. 

 In particular, d0 represents all values less than k1, dn represents all values greater than kn, and 

for i=1,2…,n-1, the dummy key di represents all values between ki and ki+1. 

 For each dummy key di, we have a probability qi that a search will correspond to di. 

 Every search is either successful (finding some key ki) or unsuccessful (finding some dummy 

key di), and so we have σi=1
𝑛 𝑝𝑖 + σi=1

𝑛 𝑞𝑖=1.

 For a given set of probabilities, we wish to construct a binary search tree whose expected 

search cost is smallest. We call such a tree an optimal binary search tree

 The total number of binary search trees with n keys is equal to the nth Catalan number, 

 C(n)= 
1

𝑛+1
 2nCn for n>0.

 Two binary search trees for a set of n = 5 keys with the following probabilities:
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 (a) A binary search tree with expected search cost 2.80. 

 (b) A binary search tree with expected search cost 2.75. 

This tree is optimal.

 A recursive solution:

 Let us define e[i,j] as the expected cost of searching an 
optimal binary search tree containing the keys 
ki….kj.Ultimately, we wish to compute e[1,n].

 e[i,j]= {qi-1    if j=i-1

  { min
𝑖≤𝑟≤𝑗

{e[i,r-1]+e[r+1,j]+w(i,j)} if i≤j.

 We also use a table root[i,j] , for recording the root of 
the subtree. 

 We will need one other table for efficiency.

 Rather than compute the value of w[i, j] from scratch 
every time we store these values in a table 
w[1…n+1,0..n]. 

 For the base case, w[i,i-1]=qi-1 for 1≤i ≤n+1. 

 w[i,j]=w[i,j-1]+pj+qj For j≥ I
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 OPTIMAL-BST (p,q,n)

1. let e[1…n+1,0..n],w[1…n+1,0…n],and 

root[1…n,1…n] be new tables

2. for i=1 to n + 1

3.        e[i,i-1]=qi-1  

4.        w[i,i-1]=qi-1 

5. for l =1 to n

6.    for i =1 to n- l + 1

7.   j = i+ l- 1

8.  e[i,j]=∞
9.  w[i,j]=w[i,j-1]+pj+qj

10.  for r = i to j

11.          t= e[i,r-1]+e[r+1,j]+ w[i, j]

12.         if t < e[i , j] 

13.         e[i,j]= t

14.    root[i,j]=r

15. return e and root 

• The OPTIMAL-BST procedure takes Θ(n3) time 
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