Algorithms Chapter 7: Dynamic Programming

GATE CS PYQ Solved by Monalisa

https://www.youtube.com/@MonalisaCS

Section 5: Algorithms

- Searching, sorting, hashing. Asymptotic worst case time and space complexity. Algorithm design techniques : greedy, dynamic programming and divide-and-conquer . Graph traversals, minimum spanning trees, shortest paths
- Chapter 1: <u>Algorithim Analysis</u>:-Algorithm intro , Order of growth ,Asymptotic notation, Time complexity, space complexity, Analysis of Recursive & non recursive program, Master theorem]
- Chapter 2:<u>Brute Force</u>:-Sequential search, Selection Sort and Bubble Sort, Radix sort, Depth first Search and Breadth First Search.
- Chapter 3: Decrease and Conquer :- Insertion Sort, Topological sort, Binary Search .
- Chapter 4: <u>Divide and conquer</u>:-Min max problem , matrix multiplication ,Merge sort ,Quick Sort , Binary Tree Traversals and Related Properties .
- Chapter 5: <u>Transform and conquer</u>:- Heaps and Heap sort, Balanced Search Trees.
- Chapter 6: <u>Greedy Method</u>:-knapsack problem, Job Assignment problem, Optimal merge, Hoffman Coding, minimum spanning trees, Dijkstra's Algorithm.
- Chapter 7: Dynamic Programming:-The Bellman-Ford algorithm ,Warshall's and Floyd's Algorithm ,Rod cutting, Matrix-chain multiplication ,Longest common subsequence ,Optimal binary search trees
- Chapter 8: Hashing.
- Reference : Introduction to Algorithms by Thomas H. Cormen
- Introduction to the Design and Analysis of Algorithms, by Anany Levitin
- My Note

- Chapter 7: Dynamic Programming:-
- Bellman-Ford single-source shortest path
- GATE CS 2013 | Question: 19
- The Floyd-Warshall algorithm,
- GATE CSE 2016 Set 2 | Question: 14, GATE CSE 2021 Set 1
 | Question: 36
- Matrix chain product,
- GATE CS 2018 | Question: 31, GATE CSE 2011 | Question: 38, GATE CS 2016 Set 2 | Question: 38
- Longest common subsequence
- <u>GATE CSE 2011 | Question: 25</u>, GATE CS 2014 Set 2 | Question: 37
- Optimal Binary Search trees.

GATE CS 2009 | Question: 13

- Which of the following statement(s) is/are correct regarding Bellman-Ford shortest path algorithm?
- **P:** Always finds a negative weighted cycle, if one exists.
- **Q:** Finds whether any negative weighted cycle is reachable from the source.
- (A)P only (B)Q only (C)Both P and Q (D)Neither P nor Q
- The Bellman-Ford algorithm returns a boolean value indicating whether or not there is a negative-weight cycle that is reachable from the source.
- P:False
- Q:True
- Ans : (B)Q only

GATE CS 2011 | Question: 25

- An algorithm to find the length of the longest monotonically increasing sequence of numbers in an array A[0:n-1] is given below.
- Let L_i, denote the length of the longest monotonically increasing sequence starting at index *i* in the array.
- Initialize $L_{n-1}=1$. For all *i* such that $0 \le i \le n-2$
- $L_i = \{1 + L_{i+1} \text{ if } A[i] < A[i+1]\}$
 - = {1 Otherwise
- Finally, the length of the longest monotonically increasing sequence is $\max(L_0, L_1, \dots, L_{n-1})$.
- Which of the following statements is **TRUE**?
- A.The algorithm uses dynamic programming paradigm
- B.The algorithm has a linear complexity and uses branch and bound paradigm
- C.The algorithm has a non-linear polynomial complexity and uses branch and bound paradigm
- D.The algorithm uses divide and conquer paradigm
- The algorithm is storing the optimal solutions to subproblems at each i, and using it to derive the optimal solution of a bigger problem.
- This is dynamic programming approach.
- Ans : A.The algorithm uses dynamic programming paradigm

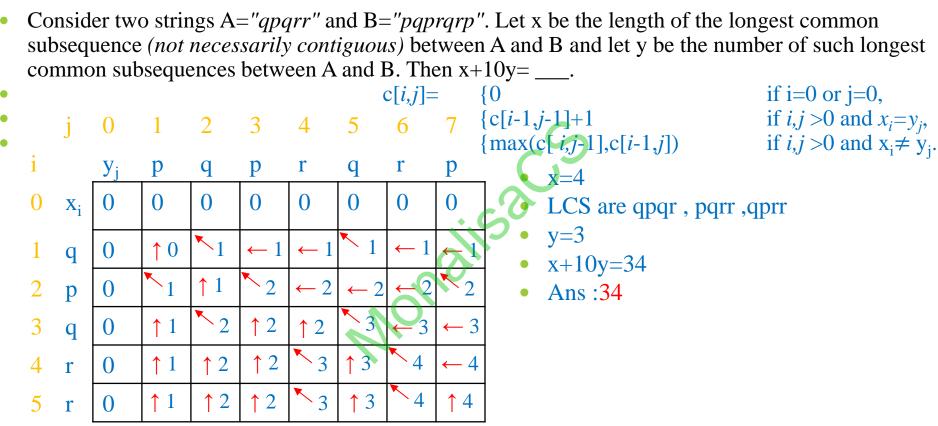
https://www.youtube.com/@MonalisaCS

-	GATE C	S 2011	Question	n: 38									htt	ps://monalis	acs.com/
•	Four Matrices M_1, M_2, M_3 and M_4 of dimensions $p \times q, q \times r, r \times s$ and $s \times t$ respectively can be multiplied											olied			
	in several ways with different number of total scalar multiplications. For example when multiplied														
	as $((M_1 \times$	M_2)×(M_3)	$\times M_4)), th$	e total	number	r of s	scalar	mul	tiplic	ations	is pqr-	⊦rst+pi	rt. Whe	n multij	olied
	as $(((M_1))$	$\langle M_2 \rangle \times M_3$	$\times M_4$), th	e total	number	r of s	scalar	mul	tiplic	ations	is pqr-	⊦prs+p	st.		
•	If $p=10,q=100,r=20,s=5$ and t=80, then the minimum number of scalar multiplications needed is														
•	A. 248000 B. 44000 C. 19000 D.25000														
	latrix	\mathbf{M}_1		M ₃	M_4	p ₀	p ₁	<i>p</i> ₂	p 3	p ₄	1	2	3	4	m
D	imension						100	20	5	80	0	•	15000	10000	1
•	m[i, j] =	0 if i=j, <i>m</i>	in {m[i, k	k]+ <i>m[k</i>	+1, <i>j</i>]+ <i>p</i>	i-1 P k	9 _i } if	f <i>i<j< i="">.</j<></i>			0	20000) 15000	19000	1
•	m[1,2]=1								4]=20)*5*80)=8000	0	10000	50000	2 <i>i</i>
•	m[1,3]=N	Min {k=1	: <i>m</i> [1,1]+	- <i>m</i> [2,3]	$+ p_0 p_1$	$p_3 =$	0+10	+000	10*1	00*5			0	8000	3
•	=15000,1	x=2: <i>m</i> [1,.	2]+m[3,3]	$[]+p_0p_2p_3$	$p_3 = 200$	00+(0+10*	*20*:	5=21	000				0	4
•	m[2,4]=N	Min{k=2:	m[2,2]+m	m[3,4] -	$+p_1p_2$	$p_{1} = 0$	0+800	00 + 1	00*2	0*80=	=16800	0, ¹		Ŭ	
•	k=3: <i>m</i> [2				- 1 - 2 -						2	3	4 s		
•	m[1,4]=N	Min{k=1:	m[1,1]+m	m[2,4] -	$+ p_0 p_1 p_1$	<i>p</i> ₄= ()+500)00+	10*1	00*80	1	1	3 1		
•	=130000											2	3 2	;	
•	44000 ,k												5 2	L	
	((M ₁ (M ₂))											https://	3 www.youtub	e.com/@Mo	nalisaCS

GATE CS 2013 | Question: 19

- What is the time complexity of Bellman-Ford single-source shortest path algorithm on a complete graph of n vertices?
- A. $\Theta(n^2)$ B. $\Theta(n^2 \log n)$ C. $\Theta(n^3)$ D. $\Theta(n^3 \log n)$
- Time complexity of Bellman-Ford algorithm is $\Theta(|V||E|)$
- |V|=n
- If the graph is complete, the value of $|E| = |V|^2 = n^2$
- Time complexity = $\Theta(n^3)$
- Ans : C. $\Theta(n^3)$

GATE CS 2014 Set 2 | Question: 37

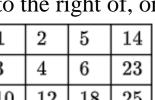


GATE CS 2015 Set 2 | Question: 31

- A Young tableau is a 2D array of integers increasing from left to right and from top to bottom. Any unfilled entries are marked with ∞ , and hence there cannot be any entry to the right of, or below a ∞ . The following Young tableau consists of unique entries.
- When an element is removed from a Young tableau, other elements should be moved into its place so that the resulting table is still a Young tableau (unfilled entries may be filled with a ∞). The minimum number of entries (other than 1) to be shifted, to remove 1 from the given Young tableau is _____.
- shift 2 left in place of 1 1:
- 4 is shifted up to the first row 2:
- 3: 6 is shifted left in second row.
- 4: 18 shifts up to the second row
- 25 is shifted left to the third column. 5:
- Also infinity is placed to the right of 25 and below 23.
- So, 5 moves and still maintains the tableau property.
- Ans: 5

1	2	5	14		
3	4	6	23		
10	12	18	25		
31	8	8	8		

2	4	5	14
3	6	18	23
10	12	25	∞
31	∞	8	∞



https://monalisacs.com

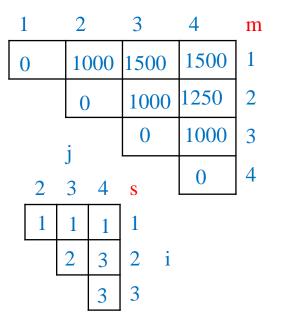
GATE CS 2016 Set 2 | Question: 14

- The Floyd-Warshall algorithm for all-pair shortest paths computation is based on
- A. Greedy paradigm.
- B. Divide-and-conquer paradigm.
- C. Dynamic Programming paradigm.
- D. Neither Greedy nor Divide-and-Conquer nor Dynamic Programming paradigm
- In Floyd Warshall's, we calculate all possibilities and select best one
- So its Dynamic Programming Paradigm.
- Ans: C. Dynamic Programming paradigm.

https://www.youtube.com/@MonalisaCS

GATE CS 2016 Set 2 | Question: 38

- Let A_1, A_2, A_3 and A_4 be four matrices of dimensions $10 \times 5, 5 \times 20, 20 \times 10$ and 10×5 , respectively. The minimum number of scalar multiplications required to find the product $A_1A_2A_3A_4$ using the basic matrix multiplication method is ______. j
 - Matrix A_1 A_2 A_3 A_4 p_0 p_1 p_2 p_3 p_4 Dimension 10×5 5×20 20×10 10×5 10520105
- m[i, j] = 0 if i = j, $\min_{\substack{i \le k \le i}} \{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j\}$ if $i \le j$.
- m[1,2]=10*5*20=1000, m[2,3]=5*20*10=1000, m[3,4]=20*10*5=1000
- $m[1,3]=Min \{k=1: m[1,1]+m[2,3] + p_0 p_1 p_3 = 0+1000+10*5*10=1500,$
- $k=2: m[1,2]+m[3,3]+p_0p_2p_3=1000+0+10*20*10=3000\}$
- $m[2,4]=Min\{k=2: m[2,2]+m[3,4] + p_1p_2p_4=0+1000+5*20*5=1500,$
- k=3: $m[2,3]+m[4,4]+p_1p_3p_4=1000+0+5*10*5=1250$ }
- $m[1,4]=Min\{k=1: m[1,1]+m[2,4]+p_0p_1p_4=0+1250+10*5*5=1500,$
- k=2: $m[1,2]+m[3,4]+p_0p_2p_4=1000+1000+10*20*5=3000$,
- k=3: $m[1,3]+m[4,4] + p_0p_3p_4=1500+0+10*10*5=2000$ }
- $(A_1((A_2 A_3) A_4))=1500,$
- Ans : 1500



GATE CS 2018 | Question: 31

- Assume that multiplying a matrix G_1 of dimension $p \times q$ with another matrix G_2 of dimension $q \times r$ requires pqr scalar multiplications. Computing the product of n matrices G_1G_2 $G_3...G_n$ can be done by parenthesizing in different ways. Define G_iG_{i+1} as an **explicitly computed pair** for a given parenthesization if they are directly multiplied. For example, in the matrix multiplication chain $G_1G_2G_3G_4G_5G_6$ using parenthesization $(G_1(G_2G_3))(G_4(G_5G_6)),$ G_2G_3 and G_5G_6 are only explicitly computed pairs.
- Consider a matrix multiplication chain $F_1F_2F_3F_4F_5$, where matrices F_1, F_2, F_3, F_4 and F_5 are of dimensions $2\times25, 25\times3, 3\times16, 16\times1$ and 1×1000 , respectively. In the parenthesization of $F_1F_2F_3F_4F_5$ that minimizes the total number of scalar multiplications, the explicitly computed pairs is/are
- A. F_1F_2 and F_3F_4 only B. F_2F_3 only C. F_3F_4 only D. F_1F_2 and F_4F_5 only
- Matrix F_5 is of dimension 1 × 1000, which will increase multiplication cost.
- So evaluating F₅ at last is optimal.
- $((F_1(F_2(F_3 F_4)))F_5): 48 + 75 + 50 + 2000 = 2173$
- F_3 , F_4 are explicitly computed pairs.
- Ans: $C.F_3F_4$ only

	Matrix	F ₁	F ₂	F ₃	F ₄	p ₀	p ₁	p ₂	p ₃	p ₄			, https j	://monalisa	acs.com	
	Dimension	2×25	25×3	3×16	16 ×1	2	25	3	16	1	1	2	3	4	m	
•	<i>m</i> [<i>i</i> , <i>j</i>] =0 i	if i=j, ņ	$nin_{\leq k \leq i} \{m$	[<i>i,k</i>]+ <i>m</i>	[<i>k</i> +1, <i>j</i>]+	$p_{i-1}p_{j}$	$\{p_j\}$		if <i>i</i> -	<j.< th=""><th>0</th><th>150</th><th>246</th><th>173</th><th>1</th><th></th></j.<>	0	150	246	173	1	
•	m[1,2]=2*2	•-	-10 - 5					6*1=	48			0	1200	123	2	i
•	m[1,3]=Min						0+2*	25*10	5 =20	00,			0	48	3	
	k=2: <i>m</i> [1,2]- m[2,4]=Min						75*2	*1-1	23					0	4	
•	k=3: m[2,3]) -1	23,					j	J	
•	m[1,4]=Min						2*2	5*1=1	173,				2	3 4	S	
	k=2: <i>m</i> [1,2]+ k=3: <i>m</i> [1,3]+					· · · · · · · · · · · · · · · · · · ·	l						1	2 1	1	
•	$(F_1(F_2)(F_3)F_2)$			4-24010		-270	J							2 2	2	i
•	Now with F	5												3	3	
•	$((F_1(F_2 (F_3 H$	$(F_4))) F_5)$	$=173+2^{3}$	*1*1000=	=2173											

GATE CS 2020 | Question: 40

- Let G=(V,E) be a directed, weighted graph with weight function $w:E \rightarrow R$. For some function $f:V \rightarrow R$, for each edge $(u,v) \in E$, define w'(u,v) as w(u,v)+f(u)-f(v).
- Which one of the options completes the following sentence so that it is TRUE?
- "The shortest paths in G under w are shortest paths under w' too,
- (A)for every $f: V \to R$ (B)if and only if $\forall u \in V, f(u)$ is positive
- (C) if and only if $\forall u \in V, f(u)$ is negative
- (D) if and only if f(u) is the distance from *s* to *u* in the graph obtained by adding a new vertex *s* to G and edges of zero weight from *s* to every vertex of *G*.
- w(A,C)=3
- w'(A,C)=w(A,C)+f(A)-f(C)=w(A,C)+constant, if f(A) & f(C)=constant
- w'(u,v) is a transformation of w(u,v).
- (A) true for every $f: V \rightarrow R$
- (B,C) f(u) positive or negative will not affect.
- (D) f(u)-f(v)=0 as zero weight from s to every vertex of G.
- This will be true if deference is either constant or 0.
- In option D its written if and only if so false.
- Ans : (A) for every $f: V \rightarrow R$

"

	GATE CS 2021 S	Set 1 Question: 3	6			https	://mon	alisac	s.com/
•	Let G=(V,E) be an defined as: diam(e <i>diameter</i> of G <i>u</i> and <i>v</i> }	is G		C		Ð		
•	Let M be the adja				U	Ì			
•	Define graph G ₂	on the same set of y	vertices with adjacency mat	rix N, where	Μ		Α	B	C
•	N _{ij} ={1	if $M_{ij} > 0$ or $P_{ij} > 0$, v	where $P = M^2$			A	0	1	0
•	={0	otherwise	\sim			B	1	0	1
•	Which one of the	following stateme	nts is true?			С	0	1	0
•	A.diam(G_2) $\leq $ [diam	m(G)/2	$B.[diam(G)/2] < diam(G_2)$) <diam(g)< td=""><td>M²</td><td>C</td><td>Δ</td><td>B</td><td></td></diam(g)<>	M ²	C	Δ	B	
•	$C.diam(G_2)=diam$	n(G)	D.diam(G) < diam(G ₂) ≤ 2	diam(G)		.	Λ	_	
•	$diam(G)=max{1$,1,2}=2		A B C	Р	A	1	0	1
•	diam(G ₂)=max{	$1,1,1$ }=1	NOA B	A 1 1 1		B	0	2	0
•	A.1 $\leq 2/2$	True	G_2	B 1 1 1		C	1	0	1
•	B.1<1<2	False		$\begin{array}{c c} \mathbf{D} & 1 & 1 & 1 \\ \mathbf{C} & 1 & 1 & 1 \\ \end{array}$					
•	C.1=2	False	\bigcirc						
•	D.2<1 ≤2*2	False							
	Ans: A.diam(G ₂))≤[diam(G)/2]		https	://www.yout	tube.c	:om/@	Monal	lisaCS

GATE CS 2021 Set 1 | Question: 40

- Define R_n to be the maximum amount earned by cutting a rod of length n meters into one or more pieces of integer length and selling them. For i>0, let p[i] denote the selling price of a rod whose length is *i* meters. Consider the array of prices:
- p[1]=1,p[2]=5,p[3]=8,p[4]=9,p[5]=10,p[6]=17,p[7]=18Which of the following statements is/are correct about R_7 ?
- A. $R_7 = 18$ B. $R_7 = 19$
- C. R_7 is achieved by three different solutions
- D. R_7 cannot be achieved by a solution consisting of three pieces
- $R_n = \max_{1 \le i \le n} (p_i + R_{n-i})$
- $R_1=1$, 1=1 no cuts $R_4=10, 4=2+2$ $R_5=13, 5=2+3$ tts $R_3=8$, 3=3 no cuts $R_6=17$, 6=6 no cuts
- $R_7 = \max\{p_1 + R_6, p_2 + R_5, p_3 + R_4, p_4 + R_3, p_5 + R_2, p_6 + R_1, p_7 + R_0\}$
- $R_7 = \max\{1+17, 5+13, 8+10, 9+8, 10+5, 17+1, 18\} = 18$
- 7,1+6,2+2+3 Three different solutions.
- Ans : A,C