
Algorithms

Chapter 7: Hashing

GATE CS Lectures

 by Monalisa
M

on
ali

sa
CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Section 5: Algorithms

 Searching, sorting, hashing. Asymptotic worst case time and space complexity. Algorithm design
techniques : greedy, dynamic programming and divide‐and‐conquer . Graph traversals, minimum
spanning trees, shortest paths

 Chapter 1:Algorithim Analysis:-Algorithm intro , Order of growth ,Asymptotic notation, Time
complexity, space complexity, Analysis of Recursive & non recursive program, Master theorem]

 Chapter 2:Brute Force:-Sequential search, Selection Sort and Bubble Sort , Radix sort, Depth first Search
and Breadth First Search.

 Chapter 3: Decrease and Conquer :- Insertion Sort, Topological sort, Binary Search .

 Chapter 4: Divide and conquer:-Min max problem , matrix multiplication ,Merge sort ,Quick Sort , Binary
Tree Traversals and Related Properties .

 Chapter 5: Transform and conquer:- Heaps and Heap sort, Balanced Search Trees.

 Chapter 6: Greedy Method:-knapsack problem , Job Assignment problem, Optimal merge, Hoffman
Coding, minimum spanning trees, Dijkstra’s Algorithm.

 Chapter 7: Dynamic Programming:-The Bellman-Ford algorithm ,Warshall’s and Floyd’s Algorithm ,Rod
cutting, Matrix-chain multiplication ,Longest common subsequence ,Optimal binary search trees

 Chapter 8: Hashing.

 Reference : Introduction to Algorithms by Thomas H. Cormen

 Introduction to the Design and Analysis of Algorithms, by Anany Levitin

 My Note

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Hashing

 Many applications require the dictionary operations INSERT, SEARCH, and DELETE.

 A hash table is an effective data structure for implementing dictionaries.

 Although searching for an element in a hash table can take as long as searching for an element

in a linked list Θ(n) time in the worst case.

 The average time to search for an element in a hash table is O(1).

❖ Direct-address tables

Direct addressing works well when the universe U of keys is reasonably small.

 To represent the dynamic set, we use an array, or direct-address table, denoted by T[0…m-1] in

which each position, or slot, corresponds to a key in the universe U .
 DIRECT-ADDRESS-SEARCH(T, k) return T[k]
 DIRECT-ADDRESS-INSERT(T, x) T[x.key]= x
 DIRECT-ADDRESS-DELETE(T,x) T[x.key] =NIL

 Each of these operations takes only O(1) time.

❖ Hash tables

 With direct addressing, an element with key k is stored in slot k.

 With hashing , this element is stored in slot h(k);

 We use a hash function h to compute the slot from the key k.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Here, h maps the universe U of keys into the slots of a hash table T[0….m-1]:
 h : U→{0,1,…m-1},
 Where the size m of the hash table is typically much less than |U|.
 We say that an element with key k hashes to slot h(k); or h(k) is the hash value of key k.

 Multiple keys may hash to the same slot. We call this situation a collision.
 Collision resolution by chaining
 In chaining, we place all the elements that hash to the same slot into the same linked list .

 The linked list can be either singly or doubly linked; we show it as doubly linked because
deletion is faster that way.

 CHAINED-HASH-INSERT(T,x) insert x at the head of list T [h(x.key)]
 CHAINED-HASH-SEARCH(T,k) search for an element with key k in list T[h(k)]
 CHAINED-HASH-DELETE(T,x) delete x from the list T [h(x.key)]

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 The worst-case running time for insertion is O(1). We can delete an element in O(1) time if the

lists are doubly linked.

 For searching, the worst case running time is proportional to the length of the list.

 Analysis of hashing with chaining
 Given a hash table T with m slots that stores n elements, we define the load factor 𝛼 for T as

n/m, that is, the average number of elements stored in a chain.

 𝛼 can be less than, equal to, or greater than 1.

 The worst-case behavior of hashing with chaining is terrible: all n keys hash to the same slot,

creating a list of length n.

 The worst-case time for searching is thus Θ (n) plus the time to compute the hash function.

 The average-case performance of hashing depends on how well the hash function h distributes

the set of keys to be stored among the m slots, on the average.
 If any given element is equally likely to hash into any of the m slots.

 We call this the assumption of simple uniform hashing.

 For j=0,1,..m-1 ,length of the list T[j] by nj,so that n=n0+n1+….nm-1, and

the expected value of nj is E[nj]= 𝛼 =n/m.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

❖ Hash functions
 Interpreting keys as natural numbers
 Most hash functions assume that the universe of keys is the set N={0,1,…n}of natural numbers.

Thus, if the keys are not natural numbers, we find a way to interpret them as natural numbers.

 The division method
 In the division method for creating hash functions, we map a key k into one of m slots by taking the

remainder of k divided by m. That is, the hash function is h(k)= k mod m.
 For example, if the hash table has size m =12 and the key is k = 100, then h(k)= 4.
 When using the division method, we usually avoid certain values of m. For example, m should not

be a power of 2, since if m = 2p, then h(k) is just the p lowest-order bits of k.
 The multiplication method
 The multiplication method for creating hash functions operates in two steps. First,we multiply the

key k by a constant A in the range 0 < A < 1 and extract the fractional part of kA.

 Then, we multiply this value by m and take the floor of the result. In short, the hash function is

h(k)= m(kA mod 1) .
 Where “kA mod 1” means the fractional part of kA, that is, kA- kA .
 We typically choose it to be a power of 2 (m=2p for some integer p), since we

can then easily implement the function on most computers.
 Folding ,Mid square ,Truncation are some other methods.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Collision resolution mechanism: open hashing (also called separate chaining) and closed
hashing (also called open addressing).

 Open addressing/Closed hashing
 In open addressing, all elements occupy the hash table itself.
 That is, each table entry contains either an element of the dynamic set or NIL.
 No lists and no elements are stored outside the table, unlike in chaining.
 The load factor 𝛼 can never exceed 1.
 We could store the linked lists for chaining inside the hash table, in the unused hash-table slots,

but the advantage of open addressing is that it avoids pointers altogether.
 To perform insertion using open addressing, we successively examine, or probe,the hash table

until we find an empty slot in which to put the key.
 With open addressing, for every key k, the probe sequence {h(k,0),h(k,1)…. h(k,m-1)} .

 HASH-INSERT(T,k)
1. i = 0
2. Repeat
3. j=h(k,i)
4. if T[j] == NIL
5. T[j]= k
6. return j
7. else i =i+ 1
8. until i == m
9. error “hash table overflow”

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 The search can terminate (unsuccessfully) when it finds an empty slot, since k would have been
inserted there and not later in its probe sequence.

 This argument assumes that keys are not deleted from the hash table.
 HASH-SEARCH(T,k)
1. i = 0
2. Repeat
3. j=h(k,i)
4. if T[j] == k
5. return j
6. i= i + 1
7. until T [j] == NIL or i == m
8. return NIL
 In Worst case searching running time O(m).
 Deletion from an open-address hash table is difficult. We can solve this problem by marking the

slot, storing in it the special value DELETED instead of NIL.

 We will examine three commonly used techniques to compute the probe sequences required for
open addressing: linear probing, quadratic probing, and double hashing.

 Linear probing
 The method of linear probing uses the hash function h(k, i)=(ℎ′(k)+ i) mod m.
 For i= 0,1,…m-1. Given key k, we first probe T[ℎ′(k)], We next probe slot

T[ℎ′(k)+1], and so on up to slot T[m-1].

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Linear probing suffers from a problem known as primary clustering.
 Clusters arise because an empty slot preceded by i full slots gets filled next with probability

(i+1)/m.
 Long runs of occupied slots tend to get longer,and the average search time increases.

 ISRO2016-29

 A Hash Function f defined as f(key)=key mod 7. With linear probing while inserting the
keys 37,38,72,48,98,11,56 into a table indexed from 0, in which location key 11 will be stored?

 A.3 B.4 C.5 D.6
Index Key

0

1

2

3

4

5

6

 f(37)=37 mod 7=2

37

 f(38)=38 mod 7=3

38

 f(72)=72 mod 7=2, h(k, i)=(ℎ′(k)+ i) mod m

 f(72)=(2+1) mod 7=3 ⇒ (2+2) mod 7=4

72 f(48)=48 mod 7=6

48

 f(98)=98 mod 7=0

98

 f(11)=11 mod 7=4 ⇒ (4+1) mod 7=5
11

 f(56)=98 mod 7=0 ⇒ (0+1) mod 7=1

56

 Ans : C.5

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Quadratic probing

 Quadratic probing uses a hash function of the form h(k, i)= (ℎ′(k)+c1i+c2i
2) mod m ,

 Where ℎ′(k) is an auxiliary hash function, c1 and c2 are positive constants , and i=0,1,… m-1.

 The initial position probed is T[ℎ′(k)] later positions probed are offset by amounts that depend

in a quadratic manner on the probe number i.

 To make full use of the hash table, the values of c1, c2, and m are constrained.

 If two keys have the same initial probe position, then their probe sequences are the same, since

h(k1,0)=h(k2,0) implies h(k1,i)=h(k2,i).

 This property leads to a milder form of clustering, called secondary clustering.

 Double hashing

 Double hashing uses a hash function of the form h(k,i)=(h1(k)+ih2(k)) mod m ,

 Where both h1 and h2 are auxiliary hash functions.

 The value h2(k) must be relatively prime to the hash-table size m.

 A convenient way to ensure this condition is to let m be a power of 2 and

to design h2 so that it always produces an odd number.

 Another way is to let m be prime and to design h2 so that it always returns

a positive integer less than m.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 For example, we could choose m prime and let h1(k)=k mod m , h2(k)=1+(k mod 𝑚′)
 where 𝑚′ is chosen to be slightly less than m .
 When m is prime or a power of 2, double hashing improves over linear or quadratic probing.
 Analysis of open-address hashing
 We express our analysis of open addressing in terms of the load factor 𝛼 = n/m of the hash

table.
 With open addressing, at most one element occupies each slot, and thus n≤ m, which implies

𝛼 ≤ 1.
 We assume that we are using uniform hashing. In this idealized scheme, the probe sequence

{h(k,0),h(k,1)…. h(k,m-1)} used to insert or search for each key k.
 Theorem

Given an open-address hash table with load factor 𝛼 = n/m < 1, the expected number of probes
in an unsuccessful search is at most 1/(1- 𝛼), assuming uniform hashing.

 Corollary
Inserting an element into an open-address hash table with load factor 𝛼 requires at most 1/(1-
𝛼) probes on average, assuming uniform hashing.

 Theorem
Given an open-address hash table with load factor 𝛼 < 1, the expected number

of probes in a successful search is at most
1

𝛼
𝐿𝑛

1

1−𝛼
 assuming uniform hashing

and assuming that each key in the table is equally likely to be searched for.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Exercises 11.4-1

 Consider inserting the keys 10, 22, 31, 4, 15, 28, 17, 88, 59 into a hash

table of length m =11 using open addressing with the auxiliary hash

function ℎ′ 𝑘 = 𝑘.Illustrate the result of inserting these keys using linear

probing, using quadratic probing with c1=1 and c2=3, and using double

hashing with h1(k)=k and h2(k)=1+ (k mod (m-1)).

 linear probing: h(k, i)=(ℎ′(k)+ i) mod m ,So h(k, i)=(k+ i) mod 11.

Index Key

0

1

2

3

4

5

6

7

8

9

10

 h(10)=10 mod 11=10 h(22)=22 mod 11=0

10

22

31

 h(15)=15 mod 11=4 , :(15+ 1) mod 11 =5

 h(31)=31 mod 11=9 h(4)=4 mod 11=4

4

15

 h(28)=28 mod 11=6 h(17)=17 mod 11=6 :(17+ 1) mod 11 =7

28

17
 h(88)=88 mod 11=0 :(88+ 1) mod 11 =1

88

 h(59)=59 mod 11=4 :(59+ 1) mod 11 =5

 (59+ 2) mod 11 =6, (59+ 3) mod 11 =7

 (59+ 4) mod 11 =8

59 M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Exercises 11.4-1

 Consider inserting the keys 10, 22, 31, 4, 15, 28, 17, 88, 59 into a hash table of
length m=11 using open addressing with the auxiliary hash function ℎ′ 𝑘 = 𝑘.
Illustrate the result of inserting these keys using linear probing, using quadratic
probing with c1=1 and c2=3, and using double hashing with h1(k)=k and
h2(k)=1+ (k mod (m-1)).

 Quadradic probing:

 h(k, i)= (ℎ′(k)+c1i+c2i
2) mod m ,So h(k, i)=(k+ i+3i2) mod 11.

Index Key

0

1

2

3

4

5

6

7

8

9

10

 h(10)=10 mod 11=10, h(22)=22 mod 11=0, h(31)=31 mod 11=9

10

22

31

 h(4)=4 mod 11=4, h(15)=15 mod 11=4 :(15+1+3) mod 11 =8

4

15

 h(28)=28 mod 11=6 h(17)=17 mod 11=6 :(17+1+3) mod 11 =10

 (17+2+3*4) mod 11 =9, (17+3+3*9) mod 11 =3

28

17

 h(88)=88 mod 11=0 :(88+1+3) mod 11 =4, (88+2+3*4) mod 11 =3

 (88+3+3*9) mod 11=8, (88+4+3*16) mod 11=8, (88+5+3*25) mod 11 =3

 (88+6+3*36) mod 11 =4, (88+7+3*49) mod 11 =0.

 h(59)=59 mod 11=4 :(59+1+3) mod 11 =7

59

 No slot available for 88.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Exercises 11.4-1

 Consider inserting the keys 10, 22, 31, 4, 15, 28, 17, 88, 59 into a hash table of
length m=11 using open addressing with the auxiliary hash function ℎ′ 𝑘 = 𝑘.
Illustrate the result of inserting these keys using linear probing, using quadratic
probing with c1=1 and c2=3, and using double hashing with h1(k)=k and
h2(k)=1+ (k mod (m-1)).

 Double hashing:

 h(k,i)=(h1(k)+ih2(k)) mod m ,So h(k, i)=(k+ i(1+k mod 10)) mod 11.

Index Key

0

1

2

3

4

5

6

7

8

9

10

 h(10)=10 mod 11=10, h(22)=22 mod 11=0, h(31)=31 mod 11=9

10

22

31

 h(4)=4 mod 11=4, h(15)=15 mod 11=4

 :(15+1+5) mod 11 =10 , (15+2*6) mod 11 =5

4

15

 h(28)=28 mod 11=6 h(17)=17 mod 11=6 :(17+1+7) mod 11 =3
28

17

 h(88)=88 mod 11=0 :(88+1+8) mod 11 =9, (88+2*9) mod 11 =7

 h(59)=59 mod 11=4 :(59+1+9) mod 11 =3, (59+2*10) mod 11 =2

59

88

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 linear probing Quadradic probing Double hashing

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Exercises 11.4-3

 Consider an open-address hash table with uniform hashing. Give upper bounds on the

expected number of probes in an unsuccessful search and on the expected number of probes in

a successful search when the load factor is 3/4 and when it is 7/8.

 α=3/4

 Unsuccessful search :
1

1− Τ3
4
= 4 probes

 Successful search:
1

Τ 3
4

𝐿𝑛
1

1− Τ 3
4
 ≈ 1.848 probes

 α=7/8

 Unsuccessful search :
1

1− Τ7
8
= 8 probes

 Successful search:
1

Τ7
8

𝐿𝑛
1

1− Τ7
8
 ≈ 2.377 probesM

on
ali

sa
CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

	Slide 1
	Slide 2
	Slide 3: Hashing
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

