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 Section 5: Algorithms

 Searching, sorting, hashing. Asymptotic worst case time and space complexity. Algorithm design 
techniques : greedy, dynamic programming and divide‐and‐conquer . Graph traversals, minimum 
spanning trees, shortest paths

 Chapter 1:Algorithim Analysis:-Algorithm intro , Order of growth ,Asymptotic notation, Time 
complexity, space complexity, Analysis of Recursive & non recursive program, Master theorem ]

 Chapter 2:Brute Force:-Sequential search, Selection Sort and Bubble Sort , Radix sort, Depth first Search 
and Breadth First Search.

 Chapter 3: Decrease and Conquer :- Insertion Sort, Topological sort, Binary Search .

 Chapter 4: Divide and conquer:-Min max problem , matrix multiplication ,Merge sort ,Quick Sort , Binary 
Tree Traversals and Related Properties .

 Chapter 5: Transform and conquer:- Heaps and Heap sort, Balanced Search Trees.

 Chapter 6: Greedy Method:-knapsack problem , Job Assignment problem, Optimal merge, Hoffman 
Coding, minimum spanning trees, Dijkstra’s Algorithm.

 Chapter 7: Dynamic Programming:-The Bellman-Ford algorithm ,Warshall’s and Floyd’s Algorithm ,Rod 
cutting, Matrix-chain multiplication ,Longest common subsequence ,Optimal binary search trees

 Chapter 8: Hashing.

 Reference : Introduction to Algorithms by Thomas H. Cormen

 Introduction to the Design and Analysis of Algorithms, by Anany Levitin

 My Note
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Hashing 

 Many applications require the dictionary operations INSERT, SEARCH, and DELETE. 

 A hash table is an effective data structure for implementing dictionaries. 

 Although searching for an element in a hash table can take as long as searching for an element 

in a linked list Θ(n) time in the worst case.

 The average time to search for an element in a hash table is O(1).

❖ Direct-address tables

Direct addressing works well when the universe U of keys is reasonably small. 

 To represent the dynamic set, we use an array, or direct-address table, denoted by T[0…m-1] in 

which each position, or slot, corresponds to a key in the universe U . 
 DIRECT-ADDRESS-SEARCH(T, k) return T[k]
 DIRECT-ADDRESS-INSERT(T, x) T[x.key]= x
 DIRECT-ADDRESS-DELETE(T,x) T[x.key] =NIL

 Each of these operations takes only O(1) time. 

❖ Hash tables

 With direct addressing, an element with key k is stored in slot k. 

 With hashing , this element is stored in slot h(k); 

 We use a hash function h to compute the slot from the key k. 
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 Here, h maps the universe U of keys into the slots of a hash table T[0….m-1]: 
 h : U→{0,1,…m-1}, 
 Where the size m of the hash table is typically much less than |U|. 
 We say that an element with key k hashes to slot h(k); or h(k) is the hash value of key k.

 Multiple keys may hash to the same slot. We call this situation a collision. 
 Collision resolution by chaining
 In chaining, we place all the elements that hash to the same slot into the same linked list .

 The linked list can be either singly or doubly linked; we show it as doubly linked because 
deletion is faster that way. 

 CHAINED-HASH-INSERT(T,x) insert x at the head of list T [h(x.key)]
 CHAINED-HASH-SEARCH(T,k) search for an element with key k in list T[h(k)]
 CHAINED-HASH-DELETE(T,x) delete x from the list T [h(x.key)]
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 The worst-case running time for insertion is O(1). We can delete an element in O(1) time if the 

lists are doubly linked. 

 For searching, the worst case running time is proportional to the length of the list.

 Analysis of hashing with chaining 
 Given a hash table T with m slots that stores n elements, we define the load factor 𝛼 for T as 

n/m, that is, the average number of elements stored in a chain.

 𝛼 can be less than, equal to, or greater than 1.

 The worst-case behavior of hashing with chaining is terrible: all n keys hash to the same slot, 

creating a list of length n. 

 The worst-case time for searching is thus Θ (n) plus the time to compute the hash function.

 The average-case performance of hashing depends on how well the hash function h distributes 

the set of keys to be stored among the m slots, on the average. 
 If any given element is equally likely to hash into any of the m slots.

 We call this the assumption of simple uniform hashing.

 For j=0,1,..m-1 ,length of the list T[j] by nj,so that n=n0+n1+….nm-1, and                                   

the expected value of nj is E[nj]= 𝛼 =n/m.
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❖ Hash functions 
 Interpreting keys as natural numbers
 Most hash functions assume that the universe of keys is the set N={0,1,…n}of natural numbers. 

Thus, if the keys are not natural numbers, we find a way to interpret them as natural numbers.

 The division method 
 In the division method for creating hash functions, we map a key k into one of m slots by taking the 

remainder of k divided by m. That is, the hash function is h(k)= k mod m.
 For example, if the hash table has size m =12 and the key is k = 100, then h(k)= 4.
 When using the division method, we usually avoid certain values of m. For example, m should not 

be a power of 2, since if m = 2p, then h(k) is just the p lowest-order bits of k. 
 The multiplication method
 The multiplication method for creating hash functions operates in two steps. First,we multiply the 

key k by a constant A in the range 0 < A < 1 and extract the fractional part of kA. 

 Then, we multiply this value by m and take the floor of the result. In short, the hash function is 

h(k)= m(kA mod 1)  . 
 Where “kA mod 1” means the fractional part of kA, that is, kA- kA .
 We typically choose it to be a power of 2 (m=2p for some integer p), since we                                 

can then easily implement the function on most computers.
 Folding ,Mid square ,Truncation are some other methods.
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 Collision resolution mechanism: open hashing (also called separate chaining) and closed 
hashing (also called open addressing). 

 Open addressing/Closed hashing
 In open addressing, all elements occupy the hash table itself. 
 That is, each table entry contains either an element of the dynamic set or NIL. 
 No lists and no elements are stored outside the table, unlike in chaining.
 The load factor 𝛼 can never exceed 1. 
 We could store the linked lists for chaining inside the hash table, in the unused hash-table slots, 

but the advantage of open addressing is that it avoids pointers altogether. 
 To perform insertion using open addressing, we successively examine, or probe,the hash table 

until we find an empty slot in which to put the key. 
 With open addressing, for every key k, the probe sequence {h(k,0),h(k,1)…. h(k,m-1)} .

 HASH-INSERT(T,k)
1. i = 0
2. Repeat
3.      j=h(k,i)
4.        if T[j] == NIL
5.   T[j]= k
6.      return j
7.       else i =i+ 1
8. until i == m
9. error “hash table overflow”
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 The search can terminate (unsuccessfully) when it finds an empty slot, since k would have been 
inserted there and not later in its probe sequence.

 This argument assumes that keys are not deleted from the hash table.
 HASH-SEARCH(T,k)
1. i = 0
2. Repeat
3.  j=h(k,i)
4.  if T[j] == k
5.         return j
6.  i= i + 1
7. until T [j] == NIL or i == m
8. return NIL 
 In Worst case searching running time O(m).
 Deletion from an open-address hash table is difficult. We can solve this problem by marking the

slot, storing in it the special value DELETED instead of NIL. 

 We will examine three commonly used techniques to compute the probe sequences required for 
open addressing: linear probing, quadratic probing, and double hashing. 

 Linear probing
 The method of linear probing uses the hash function h(k, i)=(ℎ′(k)+ i) mod m.
 For i= 0,1,…m-1. Given key k, we first probe T[ℎ′(k)], We next probe slot                              

T[ℎ′(k)+1], and so on up to slot T[m-1].
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 Linear probing suffers from a problem known as primary clustering. 
 Clusters arise because an empty slot preceded by i full slots gets filled next with probability 

(i+1)/m.
 Long runs of occupied slots tend to get longer,and the average search time increases. 

 ISRO2016-29

 A Hash Function f defined as f(key)=key mod 7. With linear probing while inserting the 
keys 37,38,72,48,98,11,56 into a table indexed from 0, in which location key 11 will be stored?

 A.3 B.4 C.5 D.6
Index Key

0

1

2

3

4

5

6

 f(37)=37 mod 7=2 

37

 f(38)=38 mod 7=3 

38

 f(72)=72 mod 7=2, h(k, i)=(ℎ′(k)+ i) mod m 

 f(72)=(2+1) mod 7=3 ⇒ (2+2) mod 7=4

72 f(48)=48 mod 7=6 

48

 f(98)=98 mod 7=0 

98

 f(11)=11 mod 7=4 ⇒ (4+1) mod 7=5
11

 f(56)=98 mod 7=0 ⇒ (0+1) mod 7=1 

56

 Ans : C.5

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS



 Quadratic probing

 Quadratic probing uses a hash function of the form h(k, i)= (ℎ′(k)+c1i+c2i
2) mod m ,

 Where ℎ′(k) is an auxiliary hash function, c1 and c2 are positive constants , and i=0,1,… m-1. 

 The initial position probed is T[ℎ′(k)] later positions probed are offset by amounts that depend 

in a quadratic manner on the probe number i. 

 To make full use of the hash table, the values of c1, c2, and m are constrained. 

 If two keys have the same initial probe position, then their probe sequences are the same, since 

h(k1,0)=h(k2,0) implies h(k1,i)=h(k2,i). 

 This property leads to a milder form of clustering, called secondary clustering. 

 Double hashing

 Double hashing uses a hash function of the form h(k,i)=(h1(k)+ih2(k)) mod m ,

 Where both h1 and h2 are auxiliary hash functions. 

 The value h2(k) must be relatively prime to the hash-table size m.

 A convenient way to ensure this condition is to let m be a power of 2 and                                 

to design h2 so that it always produces an odd number. 

 Another way is to let m be prime and to design h2 so that it always returns                                

a positive integer less than m. 
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 For example, we could choose m prime and let h1(k)=k mod m , h2(k)=1+(k mod 𝑚′) 
 where 𝑚′ is chosen to be slightly less than m .
 When m is prime or a power of 2, double hashing improves over linear or quadratic probing.
 Analysis of open-address hashing
 We express our analysis of open addressing in terms of the load factor 𝛼 = n/m of the hash 

table. 
 With open addressing, at most one element occupies each slot, and thus n≤ m, which implies 

𝛼 ≤ 1.
 We assume that we are using uniform hashing. In this idealized scheme, the probe sequence 

{h(k,0),h(k,1)…. h(k,m-1)} used to insert or search for each key k.
 Theorem 

Given an open-address hash table with load factor 𝛼 = n/m < 1, the expected number of probes 
in an unsuccessful search is at most 1/(1- 𝛼), assuming uniform hashing. 

 Corollary 
Inserting an element into an open-address hash table with load factor 𝛼 requires at most 1/(1- 
𝛼) probes on average, assuming uniform hashing. 

 Theorem 
Given an open-address hash table with load factor 𝛼 < 1, the expected number                                 

of probes in a successful search is at most 
1

𝛼
𝐿𝑛

1

1−𝛼
  assuming uniform hashing                                

and assuming that each key in the table is equally likely to be searched for. 
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 Exercises 11.4-1

 Consider inserting the keys 10, 22, 31, 4, 15, 28, 17, 88, 59 into a hash 

table of length m =11 using open addressing with the auxiliary hash 

function ℎ′ 𝑘 = 𝑘.Illustrate the result of inserting these keys using linear 

probing, using quadratic probing with c1=1 and c2=3, and using double 

hashing with h1(k)=k and h2(k)=1+ (k mod (m-1)). 

 linear probing: h(k, i)=(ℎ′(k)+ i) mod m ,So h(k, i)=(k+ i) mod 11.

Index Key

0

1

2

3

4

5

6

7

8

9

10

 h(10)=10 mod 11=10 h(22)=22 mod 11=0 

10

22

31

 h(15)=15 mod 11=4 , :(15+ 1) mod 11 =5  

 h(31)=31 mod 11=9 h(4)=4 mod 11=4  

4

15

 h(28)=28 mod 11=6 h(17)=17 mod 11=6 :(17+ 1) mod 11 =7  

28

17
 h(88)=88 mod 11=0 :(88+ 1) mod 11 =1  

88

 h(59)=59 mod 11=4 :(59+ 1) mod 11 =5

 (59+ 2) mod 11 =6, (59+ 3) mod 11 =7

 (59+ 4) mod 11 =8

59 M
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 Exercises 11.4-1

 Consider inserting the keys 10, 22, 31, 4, 15, 28, 17, 88, 59 into a hash table of 
length m=11 using open addressing with the auxiliary hash function ℎ′ 𝑘 = 𝑘. 
Illustrate the result of inserting these keys using linear probing, using quadratic 
probing with c1=1 and c2=3, and using double hashing with h1(k)=k and 
h2(k)=1+ (k mod (m-1)). 

 Quadradic probing: 

 h(k, i)= (ℎ′(k)+c1i+c2i
2) mod m ,So h(k, i)=(k+ i+3i2) mod 11.

Index Key

0

1

2

3

4

5

6

7

8

9

10

 h(10)=10 mod 11=10,    h(22)=22 mod 11=0,   h(31)=31 mod 11=9 

10

22

31

 h(4)=4 mod 11=4,          h(15)=15 mod 11=4  :(15+1+3) mod 11 =8  

4

15

 h(28)=28 mod 11=6       h(17)=17 mod 11=6    :(17+1+3) mod 11 =10 

 (17+2+3*4) mod 11 =9,   (17+3+3*9) mod 11 =3   

28

17

 h(88)=88 mod 11=0       :(88+1+3) mod 11 =4,    (88+2+3*4) mod 11 =3

 (88+3+3*9) mod 11=8,  (88+4+3*16) mod 11=8, (88+5+3*25) mod 11 =3

 (88+6+3*36) mod 11 =4, (88+7+3*49) mod 11 =0. 

 h(59)=59 mod 11=4    :(59+1+3) mod 11 =7

59

 No slot available for 88.
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 Exercises 11.4-1

 Consider inserting the keys 10, 22, 31, 4, 15, 28, 17, 88, 59 into a hash table of 
length m=11 using open addressing with the auxiliary hash function ℎ′ 𝑘 = 𝑘. 
Illustrate the result of inserting these keys using linear probing, using quadratic 
probing with c1=1 and c2=3, and using double hashing with h1(k)=k and 
h2(k)=1+ (k mod (m-1)). 

 Double hashing: 

 h(k,i)=(h1(k)+ih2(k)) mod m ,So h(k, i)=(k+ i(1+k mod 10)) mod 11.

Index Key

0

1

2

3

4

5

6

7

8

9

10

 h(10)=10 mod 11=10,    h(22)=22 mod 11=0,   h(31)=31 mod 11=9 

10

22

31

 h(4)=4 mod 11=4,          h(15)=15 mod 11=4  

 :(15+1+5) mod 11 =10 , (15+2*6) mod 11 =5  

4

15

 h(28)=28 mod 11=6       h(17)=17 mod 11=6    :(17+1+7) mod 11 =3 
28

17

 h(88)=88 mod 11=0       :(88+1+8) mod 11 =9,    (88+2*9) mod 11 =7 

 h(59)=59 mod 11=4    :(59+1+9) mod 11 =3, (59+2*10) mod 11 =2

59

88
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 linear probing  Quadradic probing  Double hashing
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 Exercises   11.4-3

 Consider an open-address hash table with uniform hashing. Give upper bounds on the 

expected number of probes in an unsuccessful search and on the expected number of probes in 

a successful search when the load factor is 3/4 and when it is 7/8. 

 α=3/4

 Unsuccessful search : 
1

1− Τ3
4
= 4 probes

 Successful search: 
1

Τ 3
4

𝐿𝑛
1

1− Τ 3
4
 ≈ 1.848 probes

 α=7/8

 Unsuccessful search : 
1

1− Τ7
8
= 8 probes

 Successful search: 
1

Τ7
8

𝐿𝑛
1

1− Τ7
8
 ≈ 2.377 probesM
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