
Algorithms

Chapter 7: Hashing

GATE CS Lectures

 by Monalisa
M

on
ali

sa
CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Section 5: Algorithms

 Searching, sorting, hashing. Asymptotic worst case time and space complexity. Algorithm design
techniques : greedy, dynamic programming and divide‐and‐conquer . Graph traversals, minimum
spanning trees, shortest paths

 Chapter 1:Algorithim Analysis:-Algorithm intro , Order of growth ,Asymptotic notation, Time
complexity, space complexity, Analysis of Recursive & non recursive program, Master theorem]

 Chapter 2:Brute Force:-Sequential search, Selection Sort and Bubble Sort , Radix sort, Depth first Search
and Breadth First Search.

 Chapter 3: Decrease and Conquer :- Insertion Sort, Topological sort, Binary Search .

 Chapter 4: Divide and conquer:-Min max problem , matrix multiplication ,Merge sort ,Quick Sort , Binary
Tree Traversals and Related Properties .

 Chapter 5: Transform and conquer:- Heaps and Heap sort, Balanced Search Trees.

 Chapter 6: Greedy Method:-knapsack problem , Job Assignment problem, Optimal merge, Hoffman
Coding, minimum spanning trees, Dijkstra’s Algorithm.

 Chapter 7: Dynamic Programming:-The Bellman-Ford algorithm ,Warshall’s and Floyd’s Algorithm ,Rod
cutting, Matrix-chain multiplication ,Longest common subsequence ,Optimal binary search trees

 Chapter 8: Hashing.

 Reference : Introduction to Algorithms by Thomas H. Cormen

 Introduction to the Design and Analysis of Algorithms, by Anany Levitin

 My Note

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Hashing

 Many applications require the dictionary operations INSERT, SEARCH, and DELETE.

 A hash table is an effective data structure for implementing dictionaries.

 Although searching for an element in a hash table can take as long as searching for an element

in a linked list Θ(n) time in the worst case.

 The average time to search for an element in a hash table is O(1).

❖ Direct-address tables

Direct addressing works well when the universe U of keys is reasonably small.

 To represent the dynamic set, we use an array, or direct-address table, denoted by T[0…m-1] in

which each position, or slot, corresponds to a key in the universe U .
 DIRECT-ADDRESS-SEARCH(T, k) return T[k]
 DIRECT-ADDRESS-INSERT(T, x) T[x.key]= x
 DIRECT-ADDRESS-DELETE(T,x) T[x.key] =NIL

 Each of these operations takes only O(1) time.

❖ Hash tables

 With direct addressing, an element with key k is stored in slot k.

 With hashing , this element is stored in slot h(k);

 We use a hash function h to compute the slot from the key k.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Here, h maps the universe U of keys into the slots of a hash table T[0….m-1]:
 h : U→{0,1,…m-1},
 Where the size m of the hash table is typically much less than |U|.
 We say that an element with key k hashes to slot h(k); or h(k) is the hash value of key k.

 Multiple keys may hash to the same slot. We call this situation a collision.
 Collision resolution by chaining
 In chaining, we place all the elements that hash to the same slot into the same linked list .

 The linked list can be either singly or doubly linked; we show it as doubly linked because
deletion is faster that way.

 CHAINED-HASH-INSERT(T,x) insert x at the head of list T [h(x.key)]
 CHAINED-HASH-SEARCH(T,k) search for an element with key k in list T[h(k)]
 CHAINED-HASH-DELETE(T,x) delete x from the list T [h(x.key)]

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 The worst-case running time for insertion is O(1). We can delete an element in O(1) time if the

lists are doubly linked.

 For searching, the worst case running time is proportional to the length of the list.

 Analysis of hashing with chaining
 Given a hash table T with m slots that stores n elements, we define the load factor 𝛼 for T as

n/m, that is, the average number of elements stored in a chain.

 𝛼 can be less than, equal to, or greater than 1.

 The worst-case behavior of hashing with chaining is terrible: all n keys hash to the same slot,

creating a list of length n.

 The worst-case time for searching is thus Θ (n) plus the time to compute the hash function.

 The average-case performance of hashing depends on how well the hash function h distributes

the set of keys to be stored among the m slots, on the average.
 If any given element is equally likely to hash into any of the m slots.

 We call this the assumption of simple uniform hashing.

 For j=0,1,..m-1 ,length of the list T[j] by nj,so that n=n0+n1+….nm-1, and

the expected value of nj is E[nj]= 𝛼 =n/m.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

❖ Hash functions
 Interpreting keys as natural numbers
 Most hash functions assume that the universe of keys is the set N={0,1,…n}of natural numbers.

Thus, if the keys are not natural numbers, we find a way to interpret them as natural numbers.

 The division method
 In the division method for creating hash functions, we map a key k into one of m slots by taking the

remainder of k divided by m. That is, the hash function is h(k)= k mod m.
 For example, if the hash table has size m =12 and the key is k = 100, then h(k)= 4.
 When using the division method, we usually avoid certain values of m. For example, m should not

be a power of 2, since if m = 2p, then h(k) is just the p lowest-order bits of k.
 The multiplication method
 The multiplication method for creating hash functions operates in two steps. First,we multiply the

key k by a constant A in the range 0 < A < 1 and extract the fractional part of kA.

 Then, we multiply this value by m and take the floor of the result. In short, the hash function is

h(k)= m(kA mod 1) .
 Where “kA mod 1” means the fractional part of kA, that is, kA- kA .
 We typically choose it to be a power of 2 (m=2p for some integer p), since we

can then easily implement the function on most computers.
 Folding ,Mid square ,Truncation are some other methods.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Collision resolution mechanism: open hashing (also called separate chaining) and closed
hashing (also called open addressing).

 Open addressing/Closed hashing
 In open addressing, all elements occupy the hash table itself.
 That is, each table entry contains either an element of the dynamic set or NIL.
 No lists and no elements are stored outside the table, unlike in chaining.
 The load factor 𝛼 can never exceed 1.
 We could store the linked lists for chaining inside the hash table, in the unused hash-table slots,

but the advantage of open addressing is that it avoids pointers altogether.
 To perform insertion using open addressing, we successively examine, or probe,the hash table

until we find an empty slot in which to put the key.
 With open addressing, for every key k, the probe sequence {h(k,0),h(k,1)…. h(k,m-1)} .

 HASH-INSERT(T,k)
1. i = 0
2. Repeat
3. j=h(k,i)
4. if T[j] == NIL
5. T[j]= k
6. return j
7. else i =i+ 1
8. until i == m
9. error “hash table overflow”

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 The search can terminate (unsuccessfully) when it finds an empty slot, since k would have been
inserted there and not later in its probe sequence.

 This argument assumes that keys are not deleted from the hash table.
 HASH-SEARCH(T,k)
1. i = 0
2. Repeat
3. j=h(k,i)
4. if T[j] == k
5. return j
6. i= i + 1
7. until T [j] == NIL or i == m
8. return NIL
 In Worst case searching running time O(m).
 Deletion from an open-address hash table is difficult. We can solve this problem by marking the

slot, storing in it the special value DELETED instead of NIL.

 We will examine three commonly used techniques to compute the probe sequences required for
open addressing: linear probing, quadratic probing, and double hashing.

 Linear probing
 The method of linear probing uses the hash function h(k, i)=(ℎ′(k)+ i) mod m.
 For i= 0,1,…m-1. Given key k, we first probe T[ℎ′(k)], We next probe slot

T[ℎ′(k)+1], and so on up to slot T[m-1].

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Linear probing suffers from a problem known as primary clustering.
 Clusters arise because an empty slot preceded by i full slots gets filled next with probability

(i+1)/m.
 Long runs of occupied slots tend to get longer,and the average search time increases.

 ISRO2016-29

 A Hash Function f defined as f(key)=key mod 7. With linear probing while inserting the
keys 37,38,72,48,98,11,56 into a table indexed from 0, in which location key 11 will be stored?

 A.3 B.4 C.5 D.6
Index Key

0

1

2

3

4

5

6

 f(37)=37 mod 7=2

37

 f(38)=38 mod 7=3

38

 f(72)=72 mod 7=2, h(k, i)=(ℎ′(k)+ i) mod m

 f(72)=(2+1) mod 7=3 ⇒ (2+2) mod 7=4

72 f(48)=48 mod 7=6

48

 f(98)=98 mod 7=0

98

 f(11)=11 mod 7=4 ⇒ (4+1) mod 7=5
11

 f(56)=98 mod 7=0 ⇒ (0+1) mod 7=1

56

 Ans : C.5

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Quadratic probing

 Quadratic probing uses a hash function of the form h(k, i)= (ℎ′(k)+c1i+c2i
2) mod m ,

 Where ℎ′(k) is an auxiliary hash function, c1 and c2 are positive constants , and i=0,1,… m-1.

 The initial position probed is T[ℎ′(k)] later positions probed are offset by amounts that depend

in a quadratic manner on the probe number i.

 To make full use of the hash table, the values of c1, c2, and m are constrained.

 If two keys have the same initial probe position, then their probe sequences are the same, since

h(k1,0)=h(k2,0) implies h(k1,i)=h(k2,i).

 This property leads to a milder form of clustering, called secondary clustering.

 Double hashing

 Double hashing uses a hash function of the form h(k,i)=(h1(k)+ih2(k)) mod m ,

 Where both h1 and h2 are auxiliary hash functions.

 The value h2(k) must be relatively prime to the hash-table size m.

 A convenient way to ensure this condition is to let m be a power of 2 and

to design h2 so that it always produces an odd number.

 Another way is to let m be prime and to design h2 so that it always returns

a positive integer less than m.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 For example, we could choose m prime and let h1(k)=k mod m , h2(k)=1+(k mod 𝑚′)
 where 𝑚′ is chosen to be slightly less than m .
 When m is prime or a power of 2, double hashing improves over linear or quadratic probing.
 Analysis of open-address hashing
 We express our analysis of open addressing in terms of the load factor 𝛼 = n/m of the hash

table.
 With open addressing, at most one element occupies each slot, and thus n≤ m, which implies

𝛼 ≤ 1.
 We assume that we are using uniform hashing. In this idealized scheme, the probe sequence

{h(k,0),h(k,1)…. h(k,m-1)} used to insert or search for each key k.
 Theorem

Given an open-address hash table with load factor 𝛼 = n/m < 1, the expected number of probes
in an unsuccessful search is at most 1/(1- 𝛼), assuming uniform hashing.

 Corollary
Inserting an element into an open-address hash table with load factor 𝛼 requires at most 1/(1-
𝛼) probes on average, assuming uniform hashing.

 Theorem
Given an open-address hash table with load factor 𝛼 < 1, the expected number

of probes in a successful search is at most
1

𝛼
𝐿𝑛

1

1−𝛼
 assuming uniform hashing

and assuming that each key in the table is equally likely to be searched for.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Exercises 11.4-1

 Consider inserting the keys 10, 22, 31, 4, 15, 28, 17, 88, 59 into a hash

table of length m =11 using open addressing with the auxiliary hash

function ℎ′ 𝑘 = 𝑘.Illustrate the result of inserting these keys using linear

probing, using quadratic probing with c1=1 and c2=3, and using double

hashing with h1(k)=k and h2(k)=1+ (k mod (m-1)).

 linear probing: h(k, i)=(ℎ′(k)+ i) mod m ,So h(k, i)=(k+ i) mod 11.

Index Key

0

1

2

3

4

5

6

7

8

9

10

 h(10)=10 mod 11=10 h(22)=22 mod 11=0

10

22

31

 h(15)=15 mod 11=4 , :(15+ 1) mod 11 =5

 h(31)=31 mod 11=9 h(4)=4 mod 11=4

4

15

 h(28)=28 mod 11=6 h(17)=17 mod 11=6 :(17+ 1) mod 11 =7

28

17
 h(88)=88 mod 11=0 :(88+ 1) mod 11 =1

88

 h(59)=59 mod 11=4 :(59+ 1) mod 11 =5

 (59+ 2) mod 11 =6, (59+ 3) mod 11 =7

 (59+ 4) mod 11 =8

59 M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Exercises 11.4-1

 Consider inserting the keys 10, 22, 31, 4, 15, 28, 17, 88, 59 into a hash table of
length m=11 using open addressing with the auxiliary hash function ℎ′ 𝑘 = 𝑘.
Illustrate the result of inserting these keys using linear probing, using quadratic
probing with c1=1 and c2=3, and using double hashing with h1(k)=k and
h2(k)=1+ (k mod (m-1)).

 Quadradic probing:

 h(k, i)= (ℎ′(k)+c1i+c2i
2) mod m ,So h(k, i)=(k+ i+3i2) mod 11.

Index Key

0

1

2

3

4

5

6

7

8

9

10

 h(10)=10 mod 11=10, h(22)=22 mod 11=0, h(31)=31 mod 11=9

10

22

31

 h(4)=4 mod 11=4, h(15)=15 mod 11=4 :(15+1+3) mod 11 =8

4

15

 h(28)=28 mod 11=6 h(17)=17 mod 11=6 :(17+1+3) mod 11 =10

 (17+2+3*4) mod 11 =9, (17+3+3*9) mod 11 =3

28

17

 h(88)=88 mod 11=0 :(88+1+3) mod 11 =4, (88+2+3*4) mod 11 =3

 (88+3+3*9) mod 11=8, (88+4+3*16) mod 11=8, (88+5+3*25) mod 11 =3

 (88+6+3*36) mod 11 =4, (88+7+3*49) mod 11 =0.

 h(59)=59 mod 11=4 :(59+1+3) mod 11 =7

59

 No slot available for 88.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Exercises 11.4-1

 Consider inserting the keys 10, 22, 31, 4, 15, 28, 17, 88, 59 into a hash table of
length m=11 using open addressing with the auxiliary hash function ℎ′ 𝑘 = 𝑘.
Illustrate the result of inserting these keys using linear probing, using quadratic
probing with c1=1 and c2=3, and using double hashing with h1(k)=k and
h2(k)=1+ (k mod (m-1)).

 Double hashing:

 h(k,i)=(h1(k)+ih2(k)) mod m ,So h(k, i)=(k+ i(1+k mod 10)) mod 11.

Index Key

0

1

2

3

4

5

6

7

8

9

10

 h(10)=10 mod 11=10, h(22)=22 mod 11=0, h(31)=31 mod 11=9

10

22

31

 h(4)=4 mod 11=4, h(15)=15 mod 11=4

 :(15+1+5) mod 11 =10 , (15+2*6) mod 11 =5

4

15

 h(28)=28 mod 11=6 h(17)=17 mod 11=6 :(17+1+7) mod 11 =3
28

17

 h(88)=88 mod 11=0 :(88+1+8) mod 11 =9, (88+2*9) mod 11 =7

 h(59)=59 mod 11=4 :(59+1+9) mod 11 =3, (59+2*10) mod 11 =2

59

88

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 linear probing Quadradic probing Double hashing

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Exercises 11.4-3

 Consider an open-address hash table with uniform hashing. Give upper bounds on the

expected number of probes in an unsuccessful search and on the expected number of probes in

a successful search when the load factor is 3/4 and when it is 7/8.

 α=3/4

 Unsuccessful search :
1

1− Τ3
4
= 4 probes

 Successful search:
1

Τ 3
4

𝐿𝑛
1

1− Τ 3
4
 ≈ 1.848 probes

 α=7/8

 Unsuccessful search :
1

1− Τ7
8
= 8 probes

 Successful search:
1

Τ7
8

𝐿𝑛
1

1− Τ7
8
 ≈ 2.377 probesM

on
ali

sa
CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

	Slide 1
	Slide 2
	Slide 3: Hashing
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

