Algorithms Chapter 7: Hashing

GATE CS Lectures by Monalisa

Section 5: Algorithms

- Searching, sorting, hashing. Asymptotic worst case time and space complexity. Algorithm design techniques : greedy, dynamic programming and divide-and-conquer . Graph traversals, minimum spanning trees, shortest paths
- Chapter 1: <u>Algorithim Analysis</u>:-Algorithm intro , Order of growth , Asymptotic notation, Time complexity, space complexity, Analysis of Recursive & non recursive program, Master theorem]
- Chapter 2:<u>Brute Force</u>:-Sequential search, Selection Sort and Bubble Sort, Radix sort, Depth first Search and Breadth First Search.
- Chapter 3: Decrease and Conquer :- Insertion Sort, Topological sort, Binary Search .
- Chapter 4: <u>Divide and conquer</u>:-Min max problem , matrix multiplication ,Merge sort ,Quick Sort , Binary Tree Traversals and Related Properties .
- Chapter 5: <u>Transform and conquer</u>:- Heaps and Heap sort, Balanced Search Trees.
- Chapter 6: <u>Greedy Method</u>:-knapsack problem, Job Assignment problem, Optimal merge, Hoffman Coding, minimum spanning trees, Dijkstra's Algorithm.
- Chapter 7: Dynamic Programming:-The Bellman-Ford algorithm ,Warshall's and Floyd's Algorithm ,Rod cutting, Matrix-chain multiplication ,Longest common subsequence ,Optimal binary search trees
- Chapter 8: Hashing.
- Reference : Introduction to Algorithms by Thomas H. Cormen
- Introduction to the Design and Analysis of Algorithms, by Anany Levitin
- My Note

Hashing

- Many applications require the dictionary operations INSERT, SEARCH, and DELETE.
- A hash table is an effective data structure for implementing dictionaries.
- Although searching for an element in a hash table can take as long as searching for an element in a linked list $\Theta(n)$ time in the worst case.
- The average time to search for an element in a hash table is O(1).
- Direct-address tables

Direct addressing works well when the universe U of keys is reasonably small.

- To represent the dynamic set, we use an array, or *direct-address table*, denoted by T[0...m-1] in which each position, or *slot*, corresponds to a key in the universe U.
- DIRECT-ADDRESS-SEARCH(T, k) return T[k]
- DIRECT-ADDRESS-INSERT(*T*, *x*) T[x.key] = x
- DIRECT-ADDRESS-DELETE(*T*,*x*) **T**[*x*.*key*] =NIL
- Each of these operations takes only O(1) time.
- Hash tables
- With direct addressing, an element with key k is stored in slot k.
- With hashing , this element is stored in slot h(k);
- We use a *hash function* h to compute the slot from the key k.

- Here, h maps the universe U of keys into the slots of a *hash table* T[0....m-1]: https://monalisacs.com
- $\mathbf{h}: \mathbf{U} \rightarrow \{0, 1, \dots \mathbf{m} 1\},\$
- Where the size m of the hash table is typically much less than |U|.
- We say that an element with key k *hashes* to slot h(k); or h(k) is the *hash value* of key k.
- Multiple keys may hash to the same slot. We call this situation a *collision*.
- Collision resolution by chaining
- In *chaining*, we place all the elements that hash to the same slot into the same linked list.
- The linked list can be either singly or doubly linked; we show it as doubly linked because deletion is faster that way.
- CHAINED-HASH-INSERT(T,x) insert x
 - CHAINED-HASH-SEARCH(T,k)
 - CHAINED-HASH-DELETE(T,x)

- The worst-case running time for insertion is O(1). We can delete an element in O(1) time if the lists are doubly linked.
- For searching, the worst case running time is proportional to the length of the list.
- Analysis of hashing with chaining
- Given a hash table T with m slots that stores n elements, we define the *load factor* α for T as n/m, that is, the average number of elements stored in a chain.
- α can be less than, equal to, or greater than 1.
- The worst-case behavior of hashing with chaining is terrible: all n keys hash to the same slot, creating a list of length n.
- The worst-case time for searching is thus $\Theta(n)$ plus the time to compute the hash function.
- The average-case performance of hashing depends on how well the hash function h distributes the set of keys to be stored among the m slots, on the average.
- If any given element is equally likely to hash into any of the m slots.
- We call this the assumption of *simple uniform hashing*.
- For j=0,1,...m-1 ,length of the list T[j] by n_j ,so that $n=n_0+n_1+...,n_{m-1}$, and the expected value of n_j is $E[n_j] = \alpha = n/m$.

Hash functions

- Interpreting keys as natural numbers
- Most hash functions assume that the universe of keys is the set $N=\{0,1,...n\}$ of natural numbers. Thus, if the keys are not natural numbers, we find a way to interpret them as natural numbers.
- The division method
- In the *division method* for creating hash functions, we map a key **k** into one of **m** slots by taking the remainder of k divided by m. That is, the hash function is $h(k) = k \mod m$.
- For example, if the hash table has size m = 12 and the key is k = 100, then h(k) = 4.
- When using the division method, we usually avoid certain values of m. For example, m should not be a power of 2, since if $m = 2^p$, then h(k) is just the p lowest-order bits of k.
- The multiplication method
- The *multiplication method* for creating hash functions operates in two steps. First, we multiply the key k by a constant A in the range 0 < A < 1 and extract the fractional part of kA.
- Then, we multiply this value by m and take the floor of the result. In short, the hash function is

 $\mathbf{h}(k) = \lfloor \mathbf{m}(k \mathbf{A} \mod 1) \rfloor \,.$

- Where "*k*A mod 1" means the fractional part of kA, that is, *k*A- [kA].
- We typically choose it to be a power of 2 (m=2^p for some integer p), since we can then easily implement the function on most computers.
- Folding ,Mid square ,Truncation are some other methods.

- Collision resolution mechanism: open hashing (also called separate chaining) and closed s.com hashing (also called open addressing).
- **Open addressing/Closed hashing**
- In open addressing, all elements occupy the hash table itself.
- That is, each table entry contains either an element of the dynamic set or NIL.
- No lists and no elements are stored outside the table, unlike in chaining.
- The load factor α can never exceed 1.
- We could store the linked lists for chaining inside the hash table, in the unused hash-table slots, but the advantage of open addressing is that it avoids pointers altogether.
- To perform insertion using open addressing, we successively examine, or *probe*, the hash table until we find an empty slot in which to put the key.
- With open addressing, for every key k, the probe sequence $\{h(k,0),h(k,1),\dots,h(k,m-1)\}$. • HASH-INSERT(T,k)

1. i = 0

```
2. Repeat

3. j=h(k,i)

4. if T[j] =

5. T[j]=

6. retur

7. else i = i
           \mathbf{if} \mathbf{T}[\mathbf{j}] == \mathbf{NIL}
                  T[i] = k
                           return j
```

- **else** i = i + 1
- 8. **until** *i* == m
- **9. error** "hash table overflow"

- The search can terminate (unsuccessfully) when it finds an empty slot, since k would have been so that the second se inserted there and not later in its probe sequence.
- This argument assumes that keys are not deleted from the hash table.
- HASH-SEARCH(T,k)
- i = 0

6.

Repeat 2.

- **3.** j=h(k,i)4. **if** T[j] == k5. **return** j
 - - return *j*
 - i = i + 1
- **until** T [i] == NIL or i == m7.

8. return NIL

- alisati In Worst case searching running time O(m).
- Deletion from an open-address hash table is difficult. We can solve this problem by marking the slot, storing in it the special value DELETED instead of NIL.
- We will examine three commonly used techniques to compute the probe sequences required for open addressing: linear probing, quadratic probing, and double hashing.
- Linear probing
- The method of *linear probing* uses the hash function $h(k, i) = (h'(k) + i) \mod m$.
- For $i=0,1,\ldots$ m-1. Given key k, we first probe T[h'(k)], We next probe slot T[h'(k)+1], and so on up to slot T[m-1].

- Linear probing suffers from a problem known as *primary clustering*.
 Clusters arise because an empty slot preceded by i full slots gets filled next with probability (i+1)/m.
- Long runs of occupied slots tend to get longer, and the average search time increases.
- ISRO2016-29
- A Hash Function f defined as f(key)=key mod 7. With linear probing while inserting the keys 37,38,72,48,98,11,56 into a table indexed from 0, in which location key 11 will be stored?

•	A.3 B.4	4 C.5	D.6		Index	Key
	f(27) = 27	mod 7_7		. 60	0	98
•	f(38) - 38	mod 7=2			1	56
•	f(72)=72	mod 7=3 mod 7=2,	h(k, i) = (h')	(k)+i) mod m	2	37
•	f(72)=(2+	-1) mod 7=3 =	\Rightarrow (2+2) mod 7	4	3	38
•	f(48)=48	mod 7=6			4	72
•	f(98)=98	mod 7=0			5	11
•	f(11)=11	$\mod 7=4 \Rightarrow (4)$	4+1) mod 7=5		6	48
	f(56)=98	$\mod 7 = 0 \Rightarrow (0)$	$0+1) \mod 7=1$		Ŭ	https://

Quadratic probing

- Quadratic probing uses a hash function of the form $h(k, i) = (h'(k) + c_1 i + c_2 i^2) \mod m$,
- Where h'(k) is an auxiliary hash function, c_1 and c_2 are positive constants, and i=0,1,... m-1.
- The initial position probed is T[h'(k)] later positions probed are offset by amounts that depend in a quadratic manner on the probe number i.
- To make full use of the hash table, the values of c_1 , c_2 , and m are constrained.
- If two keys have the same initial probe position, then their probe sequences are the same, since $h(k_1,0)=h(k_2,0)$ implies $h(k_1,i)=h(k_2,i)$.
- This property leads to a milder form of clustering, called *secondary clustering*.
- Double hashing
- **Double hashing** uses a hash function of the form $h(k,i)=(h_1(k)+ih_2(k)) \mod m$,
- Where both h_1 and h_2 are auxiliary hash functions.
- The value $h_2(k)$ must be relatively prime to the hash-table size m.
- A convenient way to ensure this condition is to let m be a power of 2 and to design h₂ so that it always produces an odd number.
- Another way is to let m be prime and to design h_2 so that it always returns a positive integer less than m.

- For example, we could choose m prime and let $h_1(k) = k \mod m$, $h_2(k) = 1 + (k \mod m^{*})^{monalisacs.com}$ where m' is chosen to be slightly less than m.
- When m is prime or a power of 2, double hashing improves over linear or quadratic probing.
- Analysis of open-address hashing
- We express our analysis of open addressing in terms of the load factor $\alpha = n/m$ of the hash table.
- With open addressing, at most one element occupies each slot, and thus $n \le m$, which implies $\alpha \le 1$.
- We assume that we are using uniform hashing. In this idealized scheme, the probe sequence $\{h(k,0),h(k,1),\dots,h(k,m-1)\}$ used to insert or search for each key k.

Theorem

Given an open-address hash table with load factor $\alpha = n/m < 1$, the expected number of probes in an unsuccessful search is at most $1/(1 - \alpha)$, assuming uniform hashing.

Corollary

Inserting an element into an open-address hash table with load factor α requires at most 1/(1- α) probes on average, assuming uniform hashing.

Theorem

Given an open-address hash table with load factor $\alpha < 1$, the expected number of probes in a successful search is at most $\frac{1}{\alpha}Ln\frac{1}{1-\alpha}$ assuming uniform hashing and assuming that each key in the table is equally likely to be searched for://www.youtube.com/@MonalisaCS

Index	Vor	• Exercises 11.4-1
maex	Key	• Consider inserting the keys 10 22 31 4 15 28 17 88 59 into a hash
0	22	table of length m =11 using open addressing with the auxiliary hash
1	88	function $h'(k) = k$.Illustrate the result of inserting these keys using linear
2		probing, using quadratic probing with $c_1=1$ and $c_2=3$, and using double
3		hashing with $h_1(k) = k$ and $h_2(k) = 1 + (k \mod (m-1))$.
5		• linear probing: $h(k, i) = (h'(k) + i) \mod m$, So $h(k, i) = (k+i) \mod 11$.
4	4	• $h(10)=10 \mod 11=10$ $h(22)=22 \mod 11=0$
5	15	• $h(31)=31 \mod 11=9$ $h(4)=4 \mod 11=4$
6	28	• $h(15)=15 \mod 11=4$, $(15+1) \mod 11=5$
7	17	• $h(28)=28 \mod 11=6$ $h(17)=17 \mod 11=6$:(17+1) mod 11=7
8	59	• $h(88)=88 \mod 11=0$:(88+1) mod 11=1
0		• $h(59)=59 \mod 11=4$:(59+1) mod 11=5
9	31	• $(59+2) \mod 11-6$ $(59+3) \mod 11-7$
10	10	• $(59+2) \mod 11 = 0$, $(59+3) \mod 11 = 7$ • $(59+4) \mod 11 = 8$
		(37 + 7) mou 11 - 0

		• Exercises 11.4-1 https://monalisacs.com/
Index	Key	• Consider inserting the keys 10, 22, 31, 4, 15, 28, 17, 88, 59 into a hash table of
0	22	length m=11 using open addressing with the auxiliary hash function $h'(k) = k$.
1		Illustrate the result of inserting these keys using linear probing, using quadratic probing with $c_1=1$ and $c_2=3$, and using double hashing with $h_1(k)=k$ and
2		$h_2(k)=1+(k \mod (m-1)).$
3	17	Quadradic probing:
4	1	• $h(k, i) = (h'(k) + c_1 i + c_2 i^2) \mod m$, So $h(k, i) = (k + i + 3i^2) \mod 11$.
4	-	• $h(10)=10 \mod 11=10$, $h(22)=22 \mod 11=0$, $h(31)=31 \mod 11=9$
5		• $h(4)=4 \mod 11=4$, $h(15)=15 \mod 11=4 : (15+1+3) \mod 11=8$
6	28	• $h(28)=28 \mod 11=6$ $h(17)=17 \mod 11=6$ $(17+1+3) \mod 11=10$
7	59	• $(17+2+3*4) \mod 11=9$, $(17+3+3*9) \mod 11=3$ • $h(88)=88 \mod 11=9$: $(88+1+3) \mod 11=4$ $(88+2+3*4) \mod 11=3$
8	15	$(80) = 60 \mod 11 = 0 (80 + 1 + 3) \mod 11 = 4, (80 + 2 + 3 + 4) \mod 11 = 3$
0	15	• $(88+3+3*9) \mod 11=8$, $(88+4+3*16) \mod 11=8$, $(88+5+3*25) \mod 11=3$
9	31	• $(88+6+3*36) \mod 11 = 4, (88+7+3*49) \mod 11 = 0.$
10	10	• $h(59)=59 \mod 11=4$:(59+1+3) mod 11 =7
		• No slot available for 88.

		• Exercises 11.4-1 https://monalisacs.com/
Index	Key	• Consider inserting the keys 10, 22, 31, 4, 15, 28, 17, 88, 59 into a hash table of
0	22	length m=11 using open addressing with the auxiliary hash function $h'(k) = k$.
1		Illustrate the result of inserting these keys using linear probing, using quadratic probing with $c_1=1$ and $c_2=3$, and using double hashing with $h_1(k)=k$ and
2	59	$h_2(k)=1+(k \mod (m-1)).$
3	17	Double hashing:
4	4	• $h(k,i)=(h_1(k)+ih_2(k)) \mod m$, So $h(k,i)=(k+i(1+k \mod 10)) \mod 11$.
5	15	• $h(10)=10 \mod 11=10$, $h(22)=22 \mod 11=0$, $h(31)=31 \mod 11=9$ • $h(4)=4 \mod 11=4$, $h(15)=15 \mod 11=4$
6	28	• $:(15+1+5) \mod 11 = 10$, $(15+2*6) \mod 11 = 5$
7	88	• $h(28)=28 \mod 11=6$ $h(17)=17 \mod 11=6$ $(17+1+7) \mod 11=3$
8		• $h(88)=88 \mod 11=0$:(88+1+8) mod 11 =9, (88+2*9) mod 11 =7
0		• $h(59)=59 \mod 11=4$:(59+1+9) mod 11 =3, (59+2*10) mod 11 =2
9	31	
10	10	

Exercises 11.4-3

- Consider an open-address hash table with uniform hashing. Give upper bounds on the expected number of probes in an unsuccessful search and on the expected number of probes in a successful search when the load factor is 3/4 and when it is 7/8.
- α=3/4
- Unsuccessful search : $\frac{1}{1-3/4} = 4$ probes
- Successful search: $\frac{1}{3/4} Ln \frac{1}{1-3/4} \approx 1.848$ probes
- α=7/8
- Unsuccessful search : $\frac{1}{1-7/8} = 8$ probes
- Successful search: $\frac{1}{7/8} Ln \frac{1}{1-7/8} \approx 2.377$ probes