Algorithms
Chapter 7: Hashing

GATE O& ectures

Qx@/lonallsa

Section 5; Aigori[hms https//monalisacs.con?\

Searching, sorting, hashing. Asymptotic worst case time and space complexity. Algorithm design
techniques : greedy, dynamic programming and divide-and-conquer . Graph traversals, minimum
spanning trees, shortest paths

Chapter 1:Algorithim Analysis:-Algorithm intro , Order of growth ,Asymptotic notation, Time
complexity, space complexity, Analysis of Recursive & non recursive program, Master theorem]

Chapter 2:Brute Force:-Sequential search, Selection Sort and Bubble Sort , Radix sort, Depth first Search
and Breadth First Search.

Chapter 3: Decrease and Conguer :- Insertion Sort, Topological sort, Binary Search .

Chapter 4: Divide and conquer:-Min max problem , matrix multiplication ,Merge sort ,Quick Sort , Binary
Tree Traversals and Related Properties .

Chapter 5: Transform and conquer:- Heaps and Heap sort, Balanced Search Trees.

Chapter 6: Greedy Method:-knapsack problem , Job Assignment problem, Optimal merge, Hoffman
Coding, minimum spanning trees, Dijkstra’s Algorithm.

Chapter 7: Dynamic Programming:-The Bellman-Ford algorithm ,Warshall’s and Floyd’s Algorithm ,Rod
cutting, Matrix-chain multiplication ,Longest common subsequence ,Optimal binary search trees

Chapter 8: Hashing.

Reference : Introduction to Algorithms by Thomas H. Cormen
Introduction to the Design and Analysis of Algorithms, by Anany Levitin
My Note

https://www.youtube.com/@ Monalisacy

\«_ We use a hash function h to compute the slot from the key k. Atps: oo youtube.com/@Monalisacs

https://monalisacs.con?\

Hashing

Many applications require the dictionary operations INSERT, SEARCH, and DELETE.

A hash table is an effective data structure for implementing dictionaries.

Although searching for an element in a hash table can take as long as searching for an element
in a linked list ®(n) time in the worst case.

The average time to search for an element in a hash table is O(1).

Direct-address tables

Direct addressing works well when the universe U-of keys is reasonably small.

To represent the dynamic set, we use an array, ot direct-address table, denoted by T[0...m-1] in
which each position, or slot, corresponds to a key in the universe U .

DIRECT-ADDRESS-SEARCH(T, k) return T[K] . W < e
DIRECT-ADDRESS-INSERT(T, x) © T[x.key]= x e .
DIRECT-ADDRESS-DELETE(T,x) ~T[x.key] =NIL —F 3

Each of these operations takes only O(1) time. 7] S
Hash tables ;_H@U

With direct addressing, an element with key k is stored in slot k.
With hashing , this element is stored in slot h(k);

4 Here, h maps the universe U of keys into the slots of a hash table T[0....m-1]; "tws/monalisacs.com

h:U-{0,1,...m-1},
Where the size m of the hash table is typically much less than |U].
We say that an element with key k hashes to slot h(k); or h(k) is the hash value of key k.

Multiple keys may hash to the same slot. We call this situation a collision.
Collision resolution by chaining
In chaining, we place all the elements that hash to the same slot into the same linked list .
The linked list can be either singly or doubly linked; we show it as doubly linked because
deletion is faster that way.
CHAINED-HASH-INSERT(T,x) insert x.at the head of list T [h(Xx.key)]
CHAINED-HASH-SEARCH(T,k) search for an element with key k in list T[h(K)]
CHAINED-HASH-DELETE(T,x) delete.x from the list T [h(x.key)]

T

T

0

U
(universe of keys)

U
(universe of keys)

B

=

— 1k T (&[]

h(ky)
hiky)

(actual
keys)

(k) = h(ks) — [k T [k] F2L [k]/]
—/[k/]
k| L k|

https://www.youtube.com/@MonalisaCS J

(actual
keys)

hiks)

\‘ ‘\‘\\\‘\

m—1

£ The worst-case running time for insertion is O(1). We can delete an element in Oty tif{i&F the

lists are doubly linked.
For searching, the worst case running time is proportional to the length of the list.

Analysis of hashing with chaining

Given a hash table T with m slots that stores n elements, we define the load factor « for T as
n/m, that is, the average number of elements stored in achain.

a can be less than, equal to, or greater than 1.

The worst-case behavior of hashing with chainingds-terrible: all n keys hash to the same slot,
creating a list of length n.

The worst-case time for searching is thus ®(n) plus the time to compute the hash function.
The average-case performance of hashing depends on how well the hash function h distributes

the set of keys to be stored among.the m slots, on the average.

If any given element is equally likely to hash into any of the m slots.
We call this the assumption of simple uniform hashing.

For j=0,1,..m-1 ,length of the list T[j] by n;,s0 that n=n,+n,+....n; ;, and
the expected value of n; is E[n;]= a =n/m.

& https://www.youtube.com/@MonalisaCy

https://monalisacs.con?\

o Hash functions

Interpreting keys as natural numbers
Most hash functions assume that the universe of keys is the set N={0,1,...n}of natural numbers.
Thus, if the keys are not natural numbers, we find a way to interpret them as natural numbers.

The division method

In the division method for creating hash functions, we map a key k into one of m slots by taking the
remainder of k divided by m. That is, the hash function-is h(k)= k mod m.

For example, if the hash table has size m =12 and the key.is k = 100, then h(k)= 4.

When using the division method, we usually avoid certain values of m. For example, m should not

be a power of 2, since if m = 2P, then h(Kk) is just the‘p lowest-order bits of k.

The multiplication method

The multiplication method for creating hash functions operates in two steps. First,we multiply the
key k by a constant A in the range 0 <'A <.1 and extract the fractional part of kKA.

Then, we multiply this value by m and-take the floor of the result. In short, the hash function is
h(k)= [m(kA mod 1)] .

Where “kA mod 1” means the fractional part of kA, that is, kKA- |kA].

We typically choose it to be a power of 2 (m=2P for some integer p), since we

can then easily implement the function on most computers.
o Folding ,Mid square , Truncation are some other methods. s youtube com/@Monalsacs /

Collision resolution mechanism: open hashing (also called separate chaining) and-clesedscom
hashing (also called open addressing).
Open addressing/Closed hashing
In open addressing, all elements occupy the hash table itself.
That is, each table entry contains either an element of the dynamic set or NIL.
No lists and no elements are stored outside the table, unlike in chaining.
The load factor a can never exceed 1.
We could store the linked lists for chaining inside the.hash table, in the unused hash-table slots,
but the advantage of open addressing is that it avoids pointers altogether.
To perform insertion using open addressing, we suecessively examine, or probe,the hash table
until we find an empty slot in which to put the key.
With open addressing, for every key k, the probe sequence {h(k,0),h(k,1).... h(k,m-1)}.
HASH-INSERT(T,k)
1=0
Repeat
J=h(k,1)
if T[j] == NIL
Thl=k
return |
elsei =i+ 1
untili==m
error “hash table overflow”

https://www.youtube,com/@MonalisaCy

_

The search can terminate (unsuccessfully) when it finds an empty slot, since k would havéeteefrscom™
inserted there and not later in its probe sequence.
This argument assumes that keys are not deleted from the hash table.
HASH-SEARCH(T k)
1=0
Repeat
j=h(k,i)
if T[j] ==
return j
iI=i+1
until T [j] == NILori==
return NIL
In Worst case searching running time O(m).
Deletion from an open-address hash table is difficult. We can solve this problem by marking the
slot, storing in it the special value DELETED instead of NIL.
We will examine three commonly used techniques to compute the probe sequences required for
open addressing: linear probing, quadratic probing, and double hashing.
Linear probing
The method of linear probing uses the hash function h(k, 1)=(h'(k)+ 1) mod m.
Fori=0,1,...m-1. Given key k, we first probe T[h'(k)], We next probe slot
T[h'(k)+1], and so on up to slot T[m-1].

https://www.youtube,com/@MonalisaCy

Linear probing suffers from a problem known as primary clustering. https://monalisacs.com
Clusters arise because an empty slot preceded by i full slots gets filled next with probability
(i+1)/m.

Long runs of occupied slots tend to get longer,and the average search time increases.
ISRO2016-29

A Hash Function f defined as f(key)=key mod 7. With linear probing while inserting the
keys 37,38,72,48,98,11,56 into a table indexed from 0, in.which location key 11 will be stored?

A3 B4 C5 D.6 Index | Key
f(37)=37 mod 7=2 | 08
£(38)=38 mod 7=3 1 96
f(72)=72 mod 7=2, h(k, i)=(h'(k)+ i) mod m 2 37
f(72)=(2+1) mod 7=3 = (2+2) mod V=4 3 38
f(48)=48 mod 7=6 4 72
£(98)=98 mod 7=0 5 11
f(11)=11 mod 7=4 = (4+1) mod 7=5

£(56)=98 mod 7=0 = (0+1) mod 7=1 6 48

K AnS . C5 https://www.youtube,com/@Monalisacy

Ve

_

https://monalisacs.con?\

Quadratic probing
Quadratic probing uses a hash function of the form h(k, i)= (h'(k)+c,i+c,i?) mod m,

Where h'(k) is an auxiliary hash function, ¢, and c, are positive constants , and i=0,1,... m-1.
The initial position probed is T[h'(k)] later positions probed are offset by amounts that depend
in a quadratic manner on the probe number i.

To make full use of the hash table, the values of c,, c,,;and m are constrained.

If two keys have the same initial probe position, then their probe sequences are the same, since
h(k,,0)=h(k,,0) implies h(k,,i)=h(k,i).

This property leads to a milder form of clustering; called secondary clustering.

Double hashing

Double hashing uses a hash function of.the form h(k,i)=(h,(k)+ih,(k)) mod m ,

Where both h; and h, are auxiliary hash functions.

The value h,(k) must be relatively prime to the hash-table size m.

A convenient way to ensure this condition is to let m be a power of 2 and
to design h, so that it always produces an odd number.

Another way is to let m be prime and to design h, so that it always returns
a positive integer less than m.

https://www.youtube.com/@MonalisaCy

/4 For example, we could choose m prime and let h,(k)=k mod m , h,(k)=1+(k mod #fg*}menaiisacs.comn
where m' is chosen to be slightly less than m .
When m is prime or a power of 2, double hashing improves over linear or quadratic probing.
Analysis of open-address hashing
We express our analysis of open addressing in terms of the load factor & = n/m of the hash
table.
With open addressing, at most one element occupies each slot, and thus n< m, which implies
a <1
We assume that we are using uniform hashing. In‘this idealized scheme, the probe sequence
{h(k,0),h(k,1).... h(k,m-1)} used to insert or search for each key k.
Theorem
Given an open-address hash table with load factor &« = n/m < 1, the expected number of probes
in an unsuccessful search is at most 1/(1- «), assuming uniform hashing.
Corollary
Inserting an element into an open-address hash table with load factor a requires at most 1/(1-
«) probes on average, assuming uniform hashing.
Theorem
Given an open-address hash table with Ioad factor a < 1, the expected number

of probes in a successful search is at most — Ln% assuming uniform hashing
_ and assuming that each key in the table is equally likely to be searched fi:/wwwyoutube.com/@Wonalisacs /

Index

O© 00O N oo o o WO N O

=
o

Key

22

88

15

28

17

59

31

10

Exe rC|SeS 11 4-1 https://monalisacs.corm\

Consider inserting the keys 10, 22, 31, 4, 15, 28, 17, 88, 59 into a hash
table of length m =11 using open addressing with the auxiliary hash
function h' (k) = k.lllustrate the result of inserting these keys using linear
probing, using quadratic probing with ¢,=1 and c,=3, and using double
hashing with h,(k)=k and h,(k)=1+(k:mod (m-1)).

linear probing: h(k, N=(h'(k)+ui).mod m ,So h(k, i)=(k+ i) mod 11.
h(10)=10 mod 11=10 h(22)=22 mod 11=0

h(31)=31 mod 11=9 h(4)=4 mod 11=4

h(15)=15 mod 11=4 :(15+ 1) mod 11 =5

h(28)=28 mod 11=6 h(17)=17 mod 11=6 :(17+ 1) mod 11 =7
h(88)=88 mod:1:1=0 :(88+ 1) mod 11 =1

h(59)=59 mod 11=4 :(59+ 1) mod 11 =5

(59+ 2) mod 11 =6, (59+ 3) mod 11 =7

(59+ 4) mod 11 =8

https://www.youtube.com/@Monalisacy

Exe rCiseS 11.4-1 https://monalisacs.corm\

Index Key Consider inserting the keys 10, 22, 31, 4, 15, 28, 17, 88, 59 into a hash table of
0 22 length m=11 using open addressing with the auxiliary hash function h'(k) = k.
Illustrate the result of inserting these keys using linear probing, using quadratic
1 probing with c,=1 and c¢,=3, and using double hashing with h,(k)=k and
2 h,(k)=1+ (k mod (m-1)).
3 17 Quadradic probing:
4 2 h(k, i)= (h'(k)+c,i+C,i%) mod m ,Se.h(k, i)=(k+ i+3i%) mod 11.
h(10)=10 mod 11=10, h(22)=22 mod 11=0, h(31)=31 mod 11=9
5 h(4)=4 mod 11=4, h(15)=15 mod 11=4 :(15+1+3) mod 11 =8
6 28 h(28)=28 mod 11=6 . h(17)=17 mod 11=6 :(17+1+3) mod 11 =10
7 59 (17+2+3*4) mod 1459, (17+3+3*9) mod 11 =3
h(88)=88 mod.11=Q~ :(88+1+3) mod 11 =4, (88+2+3*4) mod 11 =3
8 15 (88+3+3*9) mod 11=8, (88+4+3*16) mod 11=8, (88+5+3*25) mod 11 =3
9 31 (88+6+3*36) mod 11 =4, (88+7+3*49) mod 11 =0.
10 10 h(59)=59 mod 11=4 :(59+1+3) mod 11 =7
No slot available for 88.
https://www.youtube.com/@Monalisacy

Exe rCiseS 11.4-1 https://monalisacs.corm\

Index Key Consider inserting the keys 10, 22, 31, 4, 15, 28, 17, 88, 59 into a hash table of
0 22 length m=11 using open addressing with the auxiliary hash function h'(k) = k.
Illustrate the result of inserting these keys using linear probing, using quadratic
1 probing with c,=1 and c¢,=3, and using double hashing with h,(k)=k and
2 59 h,(k)=1+ (k mod (m-1)).
3 17 Double hashing:
4 1 h(k,i)=(h,(k)+ih,(k)) mod m ,So..h{ks1)=(k+ i(1+k mod 10)) mod 11.
h(10)=10 mod 11=10, h(22)=22 mod 11=0, h(31)=31 mod 11=9
3) 15 h(4)=4 mod 11=4, h(15)=15 mod 11=4
6 28 :(15+1+5) mod 11 =10,, (15+2*6) mod 11 =5
- 38 h(28)=28 mod 11=6~" h(17)=17 mod 11=6 :(17+1+7) mod 11 =3
h(88)=88 modd1=0 :(88+1+8) mod 11 =9, (88+2*9) mod 11 =7
8 h(59)=59 mod 11=4 :(59+1+9) mod 11 =3, (59+2*10) mod 11 =2
9 31
10 10
https://www.youtube.com/@Monalisacy

Index

O 0 N N b B W N = O

—
o

/e linear probing

Key

22

88

15

28

17

59

31

10

Quadradic probing

Index
0

O 0O 1 O i W N

[a—
<

Key

22

17

28

59

15

31

10

Double hashing

Index

o 00 N1 N U kR W N~ O

[a—
<o

https://monalisacs.corm\

Key

22

59

17

4

15

28

88

31

10

https://www.youtube.com/@Monalisacy

/ ExerC|ses 11 4_3 https://monalisacs.corm\

Consider an open-address hash table with uniform hashing. Give upper bounds on the
expected number of probes in an unsuccessful search and on the expected number of probes in
a successful search when the load factor is 3/4 and when it is 7/8.

a=3/4
Unsuccessful search : - 13 e 4 probes
— /4
Successful search: 31 Ln 13 ~ 1.848 probes
/4 1-°/4
a=1/8
Unsuccessful search : - 17 = 8 probes
— /8
Successful search: %Ln 17 ~ 2.377 probes
/s 1="/g

K https://www.youtube.com/@Monalisacy

	Slide 1
	Slide 2
	Slide 3: Hashing
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

