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 Section1: Engineering Mathematics

 Discrete Mathematics: Propositional and first order logic. Sets, relations, functions, partial 

orders and lattices. Monoids, Groups. Graphs: connectivity, matching, coloring. 

Combinatorics: counting, recurrence relations , generating functions.

 Linear Algebra: Matrices, determinants, system of linear equations, eigenvalues and 

eigenvectors, LU decomposition.

 Calculus: Limits, continuity and differentiability. Maxima and minima. Mean value theorem. 

Integration.

 Probability and Statistics: Random variables. Uniform, normal, exponential, poisson and 

binomial distributions. Mean, median, mode and standard deviation. Conditional probability 

and Bayes theorem. 
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 Chapter 2 : Set Theory

 2.1 Sets (21,19,15

 2.2 Set Operations(16,14,14,13

 2.3 Functions (16,15,15

 2.4 Sequences and Summations

 2.5 Cardinality of Sets(18,15,14

 2.6 Relations and Their Properties (21,20

 2.7 n-ary Relations and Their Applications

 2.8 Representing Relations

 2.9 Closures of Relations (10,16 

 2.10 Equivalence Relations (19

 2.11 Partial Orderings

 2.12 Groups (23,
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 *GATE IT 2008 | Question: 28

 Consider the following Hasse diagrams.

 Which all of the above represent a lattice?

 (A) (i) and (iv) only

 (B) (ii) and (iii) only 

 (C) (iii) only (D) (i), (ii) and (iv) only

 A partially ordered set in which every pair of elements has both a least upper bound and a 

greatest lower bound is called a lattice 

 i.Lattice 

 ii. Not a lattice.

 iii. Not a lattice.

 iv. Lattice 

 Ans: (A) (i) and (iv) only
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 *GATE CS 2009 | Question: 1

 Which one of the following is NOT necessarily a property of a Group?

 A)Commutativity   

 B)Associativity 

 C)Existence of inverse for every element  

 D)Existence of identity

 Group: closure, associative, identity, inverse.

 Ans : A)Commutativity
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 *GATE CS 2009 | Question: 4

 Consider the binary relation R ={(x,y),(x,z),(z,x),(z,y)} on the set {x,y,z}. Which one of the 

following is TRUE?

 A. R is symmetric but NOT antisymmetric B. R is NOT symmetric but antisymmetric

 C. R is both symmetric and antisymmetric D. R is neither symmetric nor antisymmetric

 R ={(x,y),(x,z),(z,x),(z,y)}

 (y,x),(y,z) are not present hence not symmetric .

 (x,z),(z,x) both are present x≠z hence not antisymmetric

 Ans : D. R is neither symmetric nor antisymmetric
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 *GATE CS 2009 | Question: 22

 For the composition table of a cyclic group shown below:

 Which one of the following choices is correct?

 A)a,b are generators B)b,c are generators

 C)c,d are generators D)d,a are generators

 a*a= a , a*a*a=a ,a is not a generator.

 b*b=a , b*b*b=b , b*b*b*b=a,b is not a generator .

 c*c=b , c*c*c=d , c*c*c*c=a , c is a generator .

 d*d=b , d*d*d=c , d*d*d*d=a , d is a generator .

 Ans : C)c,d are generators
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 *GATE CS 2010 | Question: 3

 What is the possible number of reflexive relations on a set of 5 elements?

 (A)210  (B)215  (C)220  (D)225

 Number of reflexive relations on a set of n elements= 2n2 − n 

 Number of reflexive relations on a set of 5 elements= 252 − 5= 225 − 5 =220 

 Ans : (C)220
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 *GATE CS 2010 | Question: 4

 Consider the set S={1,w,w2}, where w and w2 are cube roots of unity. If ∗ denotes the 

multiplication operation, the structure (S,∗) forms a ______

1 w w2

1 1 w w2

w w w2 1

w2 w2 1 w

 Closer 

 Associative as multiplication is associative  

 Identity element=1

 Inverse of 1=1,w= w2,w2 =w

 It satisfy all properties of group .

 Ans : Group 
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 *GATE CS 2012 | Question: 37

 How many onto (or surjective) functions are there from an n-element (n≥2) set to a 2-element 

set? A.2n  B.2n–1  C.2n–2  D. 2(2n–2)

 If |A|=m and |B|=n (m>n) then numbers of onto functions possible from A →B is 

 𝑛𝑚-𝑛𝑐1(n-1)m+ 𝑛𝑐2(n-2)m - 𝑛𝑐3(n-3)m +…..(-1)n 𝑛𝑐n−1(1)m

 |A|=n ,|B|=2

 2𝑛-2𝑐1(2-1)n

 2𝑛-2

 Ans : C.2n–2
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 *GATE CS 2013 | Question: 1

 A binary operation ⊕ on a set of integers is defined as x⊕y=x2+y2. Which one of the 
following statements is TRUE about ⊕?

 (A)Commutative but not associative  (B)Both commutative and associative

 (C)Associative but not commutative  (D)Neither commutative nor associative

 x⊕ y = x2 + y2.

 Commutativity: x ⊕y= y ⊕x.

 x ⊕y= x2+ y2 = y2+x2 = y ⊕x
LHS = RHS. hence commutative.

 Associativity: x ⊕ (y ⊕ z) =(x ⊕ y) ⊕ z

 x ⊕ (y⊕ z) = x ⊕ ( y2+z2)= x2+(y2+z2)2

 (x ⊕y) ⊕z= ( x2+y2) ⊕z=(x2+y2)2+z2

 x2+(y2+z2)2≠(x2+y2)2+z2

 Hence not associative

 Ans : (A)Commutative but not associative 
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 *GATE CS 2014 Set 1 | Question: 50

 Let S denote the set of all functions f:{0,1}4→{0,1}. Denote by N the number of functions 

from S to the set {0,1}. The value of log2⁡log2N is _______.

 {0,1}4 contains 24 elements. 

 |S|=224

 |N|=2224

 log2log2N = log2⁡log2(2224
)

  =24 =16

  Ans : 16
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 *GATE CS 2014 Set 2 | Question: 50

 Consider the following relation on subsets of the set S of integers between 1 and 2014. For 

two distinct subsets U and V of S we say U<V if the minimum element in the symmetric 

difference of the two sets is in U.

 Consider the following two statements:

• S1: There is a subset of S that is larger than every other subset.

• S2: There is a subset of S that is smaller than every other subset.

 Which one of the following is CORRECT?

 (A)Both S1 and S2 are true (B)S1 is true and S2 is false

 (C)S2 is true and S1 is false (D)Neither S1 nor S2 is true

 Symmetric difference of A and B (A−B)∪(B−A)=(A∪B)−(A∩B).

 U < V if the minimum element in the symmetric difference of the two sets is in U . 

 Suppose S={1,2,3,4,5} Let U={1,2,3,4,5} and V={1,2,5} ,SD={3,4} U<V

 S is smaller than any other subset of S. S2 is true.

 Now consider U=∅ and V={1,2} ,SD={1,2}

 The SD will always be equal to V. V<U when U is ∅.

 ∅ is greater than any other subset of S. S1 is also true.

 Ans : (A)Both S1 and S2 are true 
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 *GATE CS 2014 Set 3 | Question: 2

 Let X and Y be finite sets and f:X→Y be a function. Which one of the following statements is 
TRUE?

 A. For any subsets A and B of X,|f(A∪B)|=|f(A)|+|f(B)|

 B. For any subsets A and B of X,f(A∩B)=f(A)∩f(B)

 C. For any subsets  A and B of X,| f(A∩B)|=min{| f(A) |,| f(B) |}

 D. For any subsets S and T of Y , f-1(S∩T)=f-1(S)∩f-1(T)

 Let X={1,2,3} , Y={a ,b,c} ,f(1)=b,f(2)=a,f(3)=c,Let A={1,2},B={2,3}

 A. |f(A∪B)|=|f(1,2,3)|=3, |f(A)|+|f(B)|=2+2=4,LHS≠RHS

 B. f(A∩B)=a , f(A)∩f(B)={a,b} ∩{a,c}={a}, LHS=RHS

 If we consider a function f(1)=a,f(2)=b,f(3)=a

 f(A∩B)=b, f(A)∩f(B)={a,b} ∩{a,b}={a,b}, LHS≠RHS

 C. | f(A∩B)|=1 ,min {2,2}=2, LHS≠RHS

 D. Let S={a,b} T={b,c},f-1(S∩T)=f-1(b)={1}

 f-1(S)∩f-1(T)={1,2} ∩ {1,3}={1} 

 Ans : D. For any subsets S and T of Y , f-1(S∩T)=f-1(S)∩f-1(T)
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 GATE CS 2014 Set 3 | Question: 3

 Let G be a group with 15 elements. Let L be a subgroup of G. It is known that L≠ G and that 

the size of L is at least 4. The size of L is __________.

 O(G)=15

 O(L) can be 1,3,5,15

 But 4≤O(L)<15

 So O(L)=5

 Ans: 5
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 *GATE CS 2014 Set 3 | Question: 49

 Consider the set of all functions f:{0,1,…,2014}→{0,1,…,2014} such that f(f(i))=i, for 

all 0≤i≤2014. Consider the following statements:

 P. For each such function it must be the case that for every  i,f(i)=i.

 Q. For each such function it must be the case that for some i,f(i)=i.

 R. Each function must be onto.

 Which one of the following is CORRECT?

 (A)P,Q and R are true  (B)Only Q and R are true 

 (C)Only P and Q are true  (D)Only R is true

 There can be two possibility 

 (1) f(i)=j, f(j)=i ⇒ f(f(i))=i  for i≠j (2)f(i)=i , f(f(i))=i

 f(0)=1 , f(1)=0 , f(2)=2 , f(3)=4 , f(4)=3, …. f(2013)=2014 , f(2014)=2013 

 So P false ,Q true.

 ‘i’ ranges from 0 to 2014, so, it takes 2015 possible values. 

 domain and co – domain are exactly same. 

 All co-domains are image of some domain.

 The function is onto and hence, R is definitely true.

 Ans : (B)Only Q and R are true
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 GATE CS 2014 Set 3 | Question: 50

 There are two elements x,y in a group (G,∗) such that every element in the group can be 

written as a product of some number of x's and y's in some order. It is known that x∗x = y∗y = 

x∗y∗x∗y=y∗x∗y∗x=e where e is the identity element. The maximum number of elements in 

such a group is ____.

 x ,y ,xy ,yx are inverse of itself .

 x*y=x*e*y=x*(x*y*x*y)*y=(x*x)*y*x*(y*y)=y*x

 x*y=y*x

 G={(e,x,y,x*y),*}

 Ans :4

* e x y x*y

e e x y x*y

x x e x*y y

y y x*y e x

x*y x*y y x e
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 *GATE CS 2015 Set 1 | Question: 5

 If g(x)=1-x and h(x)=
𝑥

𝑥−1
 then 

g ℎ 𝜘

ℎ g 𝑥
 is :

 A. 
ℎ 𝑥

g 𝑥
  B. 

−1

𝑥
  C. 

g 𝑥

h 𝑥
  D.

𝑥

1−𝑥 2

 g(h(x))=g (
𝑥

𝑥−1
)

 1-
𝑥

𝑥−1
 = 

𝑥−1−𝑥

𝑥−1
 = 

−1

𝑥−1
 

 ℎ g 𝑥  = h(1-x)= 
1−𝑥

1−𝑥−1
 = 

1−𝑥

−𝑥
 



g ℎ 𝜘

ℎ g 𝑥
 = 

−1

𝑥−1
 / 

1−𝑥

−𝑥
 = 

𝑥

(𝑥−1)(1−𝑥)

 Ans A. 
ℎ 𝑥

g 𝑥
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 *GATE CS 2015 Set 1 | Question: 16

 For a set A, the power set of A is denoted by 2A. If A={5,{6},{7}}, which of the following 

options are TRUE?

 I.∅∈2A II∅⊆2A  III{5,{6}}∈2A IV{5,{6}}⊆2A

 (A)I and III only  (B)II and III only 

 (C)I, II and III only (D)I, II and IV only

 P(A)={∅,{5},{{6}},{{7}},{5,{6}},{5,{7}},{{6},{7}},{5,{6},{7}}}

 I. True , ∅ belongs to power set .

 II.True , empty set is a subset of every set.

 III. True , {5,{6}} belongs to power set

 IV. False , {5,{6}} is a elements of power set not subset .

 {{5,{6}}} is subset of power set .

 Ans: (C)I, II and III only
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 *GATE CS 2015 Set 1 | Question: 34

 Suppose L={p,q,r,s,t} is a lattice represented by the following Hasse diagram:

 For any x,y∈L, not necessarily distinct , x∨y and x∧y are join and meet                              

of x,y, respectively. Let L3={(x,y,z):x,y,z∈L} be the set of all ordered triplets                            

of the elements of L. Let Pr be the probability that an element (x,y,z)∈L3 chosen            

equiprobably satisfies x∨(y∧z)=(x∨y)∧(x∨z). Then

 (A) Pr =0 (B) Pr =1  (C) 0< Pr ≤
1

5
 (D) 

1

5
 < Pr <1

 |L3|=Number of ways in which we can choose 3 elements from 5 with repetition =5*5*5=125. 

 Now, when we take x = t, then the given condition for L is satisfied for any y and z. 

 Here, y and z can be taken in 5 * 5 = 25 ways. 

 Take x = r, y = p, z = p. x∨(y∧z)=r,(x∨y)∧(x∨z)=r

 Here also, the given condition is satisfied. So, pr > 25 / 125 > 1/5.

 For x=q, y= r, z = s, q ∨ (r ∧ s) = q ∨ p = q, while (q ∨ r) ∧ (q ∨ s) = t ∧ t = t. So, pr ≠ 1. 

 or, Its not a distributive lattice hence pr ≠ 1 

 Ans : (D) 
1

5
 < Pr <1 
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 *GATE CS 2015 Set 2 | Question: 16

 Let R be the relation on the set of positive integers such that aRb and only if a and b are 

distinct and let have a common divisor other than 1. Which one of the following statements 

about R is true?

 A. R is symmetric and reflexive but not transitive

 B. R is reflexive but not symmetric not transitive

 C. R is transitive but not reflexive and not symmetric

 D. R is symmetric but not reflexive and not transitive

 Not Reflexive : aRa ,a and a are not distinct.

 Symmetric : aRb and bRa possible 

 Ex (6,4) (4,6) 4≠6 ,common divisor 2.

 Not Transitive :(3,6) (6,2) then (3,2) 

 But 3 and 2 have no common divisor ..

 Ans: D. R is symmetric but not reflexive and not transitive
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 *GATE CS 2015 Set 2 | Question: 18

 The cardinality of the power set of {0,1,2,…,10} is _______.

 Cardinality of set=11

 The cardinality of the power set =211=2048

 Ans :2048
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 GATE CS 2015 Set 2 | Question: 32

 Consider two relations R1(A,B) with the tuples (1,5),(3,7) and R2(A,C)=(1,7),(4,9).

 Assume that R(A,B,C) is the full natural outer join of R1 and �2. Consider the following 

tuples of the form (�,�,�):

 �=(1,5,����),�=(1,����,7),�=(3,����,9),�=(4,7,����),�=(1,5,7),

 �=(3,7,����),�=(4,����,9).

 Which one of the following statements is correct?

1. � contains �,�,�,�,� but not �,�.

2. � contains all �,�,�,�,�,�,�.

3. � contains �,�,� but not �,�.

4. � contains � but not �,�. M
on

ali
sa

CS

https://monalisacs.com/

 2025©MonalisaCS . All rights reserve https://www.youtube.com/@MonalisaCS



 *GATE CS 2015 Set 2 | Question: 40

 The number of onto functions (surjective functions) from set X={1,2,3,4} to set Y={a,b,c} is 

______.

 If |X|=m and |Y|=n (m>n) then numbers of onto functions possible from  X → Y is                 

𝑛𝑚-𝑛𝑐1(n-1)m+ 𝑛𝑐2(n-2)m - 𝑛𝑐3(n-3)m +…..(-1)n 𝑛𝑐n−1(1)m

 m=4,n=3

 𝑛𝑚-𝑛𝑐1(n-1)m+ 𝑛𝑐2(n-2)m - 𝑛𝑐3(n-3)m +…..(-1)n 𝑛𝑐n−1(1)m

 =34- 3𝑐1(3-1)4+ 3𝑐2(3-2)4 

 =81-3*16+3

 =81-48+3

 =84-48

 =36

 Ans : 36
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 *GATE CS 2015 Set 2 | Question: 54

 Let X and Y denote the sets containing 2 and 20 distinct objects respectively and F denote the 

set of all possible functions defined from X to Y. Let f be randomly chosen from F. The 

probability of f being one-to-one is ______.

 |X|=2,|Y|=20

 Total functions possible=|Y||X|=202

 One to one function possible =|Y|P|X|= 20 P 2=
20!

20−2 !
 =20*19

 The probability of f being one to one is=
20∗19

20×20
 =

19

20
=.95

 Ans : .95
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 *GATE CS 2015 Set 3 | Question: 23

 Suppose U is the power set of the set S={1,2,3,4,5,6}. For any T∈U, let |T| denote the number 
of elements in T and T ′ denote the complement of T . For any T ,R∈ U let T∖R be the set of 
all elements in T which are not in R. Which one of the following is true?

 (A)∀X∈U,(|X|=|X′|) (B)∃X∈U,∃Y∈U,(|X|=5,|Y|=5 and X∩Y=∅)

 (C)∀X∈U,∀Y∈U,(|X|=2,|Y|=3 and X∖Y= ∅) (D)∀X∈U,∀Y∈U,(X∖Y=Y′∖X′)

 S={1,2,3,4,5,6}

 A. Let X=[{1},{2},{1,3}] therefore |X′|=64-3=61, |X|≠|X′|,Wrong

 B. Let X={1,2,3,4,5},Y={2,3,4,5,6} , X∩Y={2,3,4,5}

 Wrong as any two possible subsets can have some elements in common ,Hence,  X∩Y cannot 
be always null.

 C.Let X={2,5} ,Y={1,3,5}, X\Y={2}

 Wrong as it is not always ∅ .Sometimes it is ∅.

 D. X∖Y=X ∩ 𝑌′

 Y′∖X′ = Y′ ∩ (X′) ′= Y′ ∩ X= X ∩ 𝑌′ 

 Ans : (D)∀X∈U,∀Y∈U,(X∖Y=Y′∖X′)

M
on

ali
sa

CS

https://monalisacs.com/

 2025©MonalisaCS . All rights reserve https://www.youtube.com/@MonalisaCS



 *GATE CS 2015 Set 3 | Question: 41

 Let R be a relation on the set of ordered pairs of positive integers such that ((p,q),(r,s))∈R if 

and only if p−s=q−r. Which one of the following is true about R?

 (A)Both reflexive and symmetric (B)Reflexive but not symmetric

 (C)Not reflexive but symmetric (D)Neither reflexive nor symmetric

 Reflexive 

 If ((p,q) , (p,q))∈R then p-q=q-p , not possible 

 Symmetric 

 If ((p,q),(r,s))∈R→ ((r,s),(p,q))∈R

 ((p,q),(r,s))∈R means p-s=q-r

 ((r,s),(p,q)) ∈R means r-q=s-p

 r-q=s-p ⇒ -(q-r)=-(p-s) ⇒ (q-r)=(p-s) 

 Ans : (C)Not reflexive but symmetric
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 *GATE CS 2016 Set 1 | Question: 28

 A function f:N+→N+ , defined on the set of positive integers N+, satisfies the following 

properties: f(n)=f(n/2) if n is even

  f(n)=f(n+5) if n is odd

 Let R={i∣∃j:f(j)=i} be the set of distinct values that f takes. The maximum possible size of R is 

___________.

 Let f(1)=x,

 f(2)=f(2/2)=x

 f(3)=f(3+5)= f(8)= f(4)=f(2)=x

 f(4)=f(2)=x

 f(5)=f(10)= f(5)=y let

 f(6)=f(3)=x

 So there are 2 distinct values that f takes.

 Ans : 2
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 *GATE CS 2016 Set 2 | Question: 26

 A binary relation R on N×N is defined as follows: (a,b)R(c,d) if a ≤ c or b ≤ d. Consider the 

following propositions:

 P: R is reflexive.  Q: R is transitive.

  Which one of the following statements is TRUE?

 (A)Both P and Q are true.  (B)P is true and Q is false.

 (C)P is false and Q is true.  (D)Both P and Q are false.

 P:Reflexive  (a,b)R(a,b) a=a,b=b ,True

 Q:Transitive ((a,b)R(c,d)) , ((c,d)R(d,e)) then ((a,b)R(d,e))

 ((2,4)R(5,3)) , ((5,3)R(1,3)) then ((2,4)R(1,3)) not possible

 2 ≤5 or 4 ≤3 , 5 ≤1 or 3 ≤3           2 ≤1 or 4 ≤3

 R is reflexive but not transitive 

 Ans : (B)P is true and Q is false.
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 *GATE CS 2016 Set 2 | Question: 28

 Consider a set U of 23 different compounds in a chemistry lab. There is a subset S of U of 9 

compounds, each of which reacts with exactly 3 compounds of U. Consider the following 

statements:

I. Each compound in U \ S reacts with an odd number of compounds.

II. At least one compound in U \ S reacts with an odd number of compounds.

III. Each compound in U \ S reacts with an even number of compounds.

 Which one of the above statements is ALWAYS TRUE?

 (A)Only I (B)Only II (C)Only III (D)None.

 “\” is the set difference operation. Same as U – S.

 Since U is universal set, U\S would give complement of S = തS

 Let S contains Compounds numbered {1,2,3…8, 9} so U\S contains Compounds {10, 11, 

12…. 22, 23}

 Consider these compounds to be vertices of a graph.

 An edge b/w two vertices indicate that the compounds react with each other.
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 This graph has NO multiple edge,no directed edges cause if one compound reacts with other it 

also means other reacts with it too. Single edge represent reaction b/w both.It has NO Loops 

cause compound don’t react with itself.

 Hence graph is simple undirected graph.

 “An undirected graph has even number of vertices of odd degree”

 9 vertices of this graph have degree 3 (odd degree) cause 9 compounds react with 3 other 

compounds.

 Hence there must be at LEAST 1 more vertex which must have an odd degree.

 This extra compound must belong to U\S cause 9 compounds in S have already been 

accounted for.

 This implies statement II in the question is TRUE.

 Other 2 statements are False.

 Ans : (B)Only II
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 *GATE CS 2017 Set 2 | Question: 21

 Consider the set X={a,b,c,d,e} under partial ordering R = {(a,a),(a,b),(a,c),                                   

(a,d),(a,e),(b,b),(b,c),(b,e),(c,c),(c,e),(d,d),(d,e),(e,e)}

 The Hasse diagram of the partial order (X,R) is shown below.

 The minimum number of ordered pairs that need to be added to R to make                        

(X,R) a lattice is ______

  A Hasse Diagram is called a Lattice if, for every pair of elements, there                                       

exists a LUB and GLB.

 In the above Hasse Diagram, LUB and GLB exist for every two elements.

 So, it is already a Lattice.

 Ans : The Minimum number of ordered pairs that need to be added 0. M
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 *GATE CS 2018 | Question: 19

 Let G be a finite group on 84 elements. The size of a largest possible proper subgroup of G is 

_____ .

 O(G)=84

 O(H)=2,3,4,6,7,12,14,21,28,42 

 Ans : 42
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 *GATE CS 2018 | Question: 27

 Let N be the set of natural numbers. Consider the following sets,

 P: Set of Rational numbers (positive and negative)

 Q: Set of functions from {0,1} to N

 R: Set of functions from N to {0,1}

 S: Set of finite subsets of N

 Which of the above sets are countable?

 A.Q and S only  B.P and S only C.P and R only D.P,Q and S only

 P: Set of Rational numbers are countable. Rational numbers are of the form p/q where p,q are 

integers. 

 Q: Set of functions from {0,1} to N. There are N2 such functions. Hence countable.

 R: Set of functions from N to {0,1}. There are 2N such functions. If a set S is countable, 

then P(S) i.e 2S is uncountable.

 Hence, statement R is uncountable.

 S: Set of finite subsets of N. They are countable. Every subset of a                                  

countable set is either countable or finite.

 Ans : D.P,Q and S only
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 *GATE CS 2019 | Question: 5

 Let U={1,2,…,n} Let A={(x,X)∣x∈X,X⊆U}. Consider the following two statements on ∣A∣.

  I.|A|=n2n-1 II.∣A∣=𝛴𝑘=1
𝑛  k

𝑛
𝑘

 Which of the above statements is/are TRUE?

 (A)Only I (B)Only II  (C)Both I and II (D)Neither I nor II

 For n=2, U={1,2}

 The subsets of U are {Φ,{1},{2},{1,2}}

 So , set X has 4 possibilities. x can be 1 or 2.

 A=(x,X) = (1,Φ),(1,{1}),(1,{2}),(1,{1,2}),(2,Φ),(2,{1}),(2,{2}),(2,{1,2})

 (1,Φ), (1,{2}),(2,Φ),(2,{1}) will not be considered, as x ∉ X.

 so A={ (1,{1}),(1,{1,2}),(2,{2}),(2,{1,2})} 

 ∴ |A|=4

 If n=3,U={1,2,3},

 A={ (1,{1}),(1,{1,2}), (1,{1,3}), (1,{1,2,3}),(2,{2}),(2,{1,2}), (2,{2,3}), (2,{1,2,3}), 

(3,{3}),(3,{1,3}), (3,{2,3}), (3,{1,2,3})} 

 ∴ |A|=12
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 I.|A|=n2n-1         

 When n=2 ⇒2*2=4 

 When n=3 ⇒3*22=12 

 II.∣A∣=𝛴𝑘=1
𝑛  k

𝑛
𝑘

 

 When n=2 ⇒1*2C1+ 2*2C2 =2+2=4 

 When n=3 ⇒1*3C1+2*3C2+3*3C3 =3+2*3+3=12

 or

 U={1,2,…,n} Let A={(x,X)∣x∈X,X⊆U}.

 |X|= 2n = 
𝑛
0

+ 
𝑛
1

+ 
𝑛
2

+…… 
𝑛
𝑛

 x can be any element of individual subset X.

 |A|= 
𝑛
0

*0+ 
𝑛
1

*1+ 
𝑛
2

*2+…… 
𝑛
𝑛

*n=n 2n-1

 Ans : (C)Both I and II 
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 *GATE CS 2019 | Question: 10

 Let G be an arbitrary group. Consider the following relations on G:

 R1:∀a,b∈G,aR1b if and only if ∃g∈G such that a=g−1bg

 R2:∀a,b∈G,aR2b if and only if a=b−1

 Which of the above is/are equivalence relation/relations?

 A.R1 and R2 B.R1 only  C.R2 only  D.Neither R1 nor  R2

 Reflexive: a = g–1ag can be satisfied by putting g = e, identity “e” always exists in a group.

 Symmetric: aRb ⇒ a = g–1bg for some g 

 ⇒ b = gag–1 = (g–1)–1a(g–1 ) always exists for every g ∈ G. 

 Transitive: aRb and bRc ⇒ a = g1
–1bg1 and b = g2

–1 cg2 for ∃ g1,g2 ∈ G. 

 Now a = g1
–1 g2

–1 cg2g1 = (g2g1)
–1 cg2g1 

 g1 ∈ G and g2 ∈ G ⇒ g2g1 ∈ G since group is closed so aRb and bRc ⇒ aRc 

 R1 is a equivalence relation, because it satisfied reflexive, symmetric, and transitive

 R2 is not equivalence because it does not satisfied reflexive condition of equivalence relation:

 aR2a ⇒ a = a–1 ∀a which not be true in a group. 

 Ans : B.R1 only
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 *GATE CS 2020 | Question: 17

 Let R be the set of all binary relations on the set {1,2,3}. Suppose a relation is chosen 

from R at random. The probability that the chosen relation is reflexive (round off to 3 decimal 

places) is ______.

 Number of reflexive relation are = 2n2 − n = 232 − 3 = 26 

 Number of relations possible =2n2 =232 =29 

 The probability that the chosen relation is reflexive =
26

29 = 
1

23 = 
1

8
=.125

 Ans : .125
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 *GATE CS 2020 | Question: 18

 Let G be a group of 35 elements. Then the largest possible size of a subgroup of G other 

than G itself is _______.

 O(G)=35

 O(H)=1,5,7,35

 Largest size of subgroup =7

 Ans : 7
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 *GATE CS 2021 Set 1 | Question: 34

 Let G be a group of order 6, and H be a subgroup of G such that 1<|H|<6. Which one of the 

following options is correct?

 A. Both G and H are always cyclic

 B. G may not be cyclic, but H is always cyclic

 C. G is always cyclic, but H may not be cyclic

 D. Both G and H may not be cyclic

 Lagrange's Theorem: The order of every subgroup of G divides the order of G

 O(G)=6

 O(H)=2 or 3

 Any group of prime order is cyclic hence H is always cyclic

 G may or may not be cyclic.

 Ans: (B) G may not be cyclic, but H is always cyclic
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 *GATE CS 2021 Set 1 | Question: 43

 A relation R is said to be circular if aRb and bRc together imply cRa.

 Which of the following options is/are correct?

 (A) If a relation S is reflexive and symmetric, then S is an equivalence relation.

 (B) If a relation S is circular and symmetric, then S is an equivalence relation.

 (C) If a relation S is reflexive and circular, then S is an equivalence relation.

 (D) If a relation S is transitive and circular, then S is an equivalence relation.

 Equivalence relation : reflexive, symmetric and transitive

 A. S is reflexive and symmetric it doesn’t satisfy equivalence property

 B. S is circular and symmetric means it can be transitive but not reflexive ,So not equivalence 

 C. S is reflexive and circular hence can be symmetric and transitive , So equivalence

 D. S is both transitive and circular but not reflexive, hence not equivalence

 Ans:(C) If a relation S is reflexive and circular, then S is an equivalence relation.
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 *GATE CS 2021 Set 2 | Question: 11

 Consider the following sets, where n ≥2:

• S1: Set of all n×n matrices with entries from the set {a,b,c}

• S2: Set of all functions from the set {0,1,2,…,n2−1} to the set {0,1,2}

 Which of the following choice(s) is/are correct?

 (A) There does not exist a bijection from S1 to S2

 (B) There exists a surjection from  S1 to S2

 (C) There exists a bijection from S1 to S2

 (D)  There does not exist an injection from S1 to S2

 S1: n×n matrices contain n2 elements ,3 choices for each element, so number of such 

matrices =3n2
.

 S2: number of functions possible = 3n2
.

 | S1 |=| S2| So bijection is possible, surjection & injection is also possible.

 Ans : (B),(C) M
on

ali
sa

CS

https://monalisacs.com/

 2025©MonalisaCS . All rights reserve https://www.youtube.com/@MonalisaCS



 *GATE CS 2021 Set 2 | Question: 50

 Let S be a set of consisting of 10 elements. The number of tuples of the form (A,B) such 

that A and B are subsets of S, and A⊆B is ___________.

 Method 1:Lets S={a},|S|=1

 (A,B)= (∅,∅),(∅,{1}),({1},{1}) number of tuples =3=31

 Lets S={a,b},|S|=2

 (A,B)= (∅,∅),(∅,{1}),(∅,{2}), (∅,{1,2}), 

({1},{1}),({1},{1,2}),({2},{2}),({2},{1,2}),({1,2},{1,2})

 Number of tuples =9=32

 |S|=10 , number of tuples =310 =59049

 Method 2: We want the ordered pairs (A,B) where (A⊆S,B⊆S;A⊆B;)

 For every element x of set S, we have three choices 

• Choice 1 : x∉A and x∉B ,Choice 2 : x∉A and x∈B,Choice 3 : x∈A and x∈B

 For each x we have 3 choices, and |S|=10 . So, answer will be 310.

 Ans : 59049
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 *GATE CS 2022 |Question: 17

 Which of the following statements is/are TRUE for a group G?

 A. If for all x,y ∈G,(xy)2=x2y2, then G is commutative.

 B. If for all x∈G,x2=1, then G is commutative. Here, 1 is the identity element of G.

 C. If the order of G is 2, then G is commutative.

 D. If G is commutative, then a subgroup of G need not be commutative.

 A. (xy)2= x2y2

 (xy)(xy)=(xx)(yy)⇒xyxy=xxyy 

 After cancellation of x from left side and y from right side yx=xy .True

 B. ∀x∈G,x2=1 means every element is inverse of itself ,x=x-1

 (ab)-1=b-1a-1 ⇒ab=ba , hence commutative true .

 C. Order of G is 2, one element is Identity element, So another element x is inverse to itself. 
By Option B, G is commutative.True

 D. If  G is commutative, then a subgroup of  G should be commutative.False 

 Ans :A,B,C
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 *GATE CS 2022 | Question: 26

 Which one of the following is the closed form for the generating function of the sequence 
{an}n≥0 defined below?

 an ={n+1,n is odd ={1,otherwise

 (A)
𝑥 1+𝑥2

1−𝑥2 2 +
1

1−𝑥
         (B)

𝑥 3−𝑥2

1−𝑥2 2 +
1

1−𝑥
         (C)

2𝑥

1−𝑥2 2 +
1

1−𝑥
     (D)

𝑥

1−𝑥2 2 +
1

1−𝑥

 Generating function G(x) for the sequence an is G(x) = σ𝑛=0
∞ 𝑎𝑛𝑥𝑛

 The sequence a0x
0+a1x

1 +a2x
2 +a3x

3 +a4x
4 +a5x

5 +a6x
6 +………∞

 =1+2x+x2+4x3+x4+6x5+x6+8x7+x8+10x9+x10+………∞

 =(1+x2+x4+x6+x8+x10…… ∞)+(2x+4x3+6x5+8x7+10x9+………∞)

 1+x2+x4+x6+x8…… ∞=
1

1−𝑥2  Let 2x+4x3+6x5+8x7+10x9+………∞=P

 Px2= 2x3+4x5+6x7+8x9+10x11+………∞

 P-Px2=2x+2x3+2x5+2x7+2x9+2x11+………∞ 

 =2x(1+x2+x4+x6+x8+x10+………∞)

 P-Px2=
2x

1−𝑥2
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 ⇒P(1-x2)=
2x

1−𝑥2 ⇒P=
2x

1−𝑥2 2

 =
1

1−𝑥2 + 
2x

1−𝑥2 2 

 =
1+𝑥−𝑥

1−𝑥2  + 
2x

1−𝑥2 2 

 =
1+𝑥

1−𝑥2 -
x

1−𝑥2 + 
2x

1−𝑥2 2 

 =
1+𝑥

(1−𝑥)(1+𝑥)
 -

x

1−𝑥2 + 
2x

1−𝑥2 2

 =
1

(1−𝑥)
 -

x

1−𝑥2 + 
2x

1−𝑥2 2 =
1

(1−𝑥)
 + 

2x

1−𝑥2 2 -
x

1−𝑥2 

 =
1

(1−𝑥)
 + 

2x−𝑥(1−𝑥2)

1−𝑥2 2  

 =
1

(1−𝑥)
 + 

2x−𝑥+𝑥3

1−𝑥2 2  = 
1

(1−𝑥)
 + 

x+𝑥3

1−𝑥2 2 

 Ans : (A)
𝑥 1+𝑥2

1−𝑥2 2 +
1

1−𝑥
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 *GATE CS 2023 | Question: 39

 Let f:A→B be an onto (or surjective) function, where A and B are 
nonempty sets. Define an equivalence relation ∼ on the set A as 

a1∼a2 if f(a1)=f(a2),

 where a1,a2∈A. Let 𝜀={[x]:x∈A} be the set of all the equivalence classes 
under ∼. Define a new mapping F: 𝜀 →B as F([x])=f(x), for all the 
equivalence classes [x] in  𝜀.
Which of the following statements is/are TRUE?

 (A)F is NOT well-defined.      (B)F is an onto (or surjective) function.

 (C)F is a one-to-one (or injective) function.    (D)F is a bijective function.

 Let’s A={1,2,3,4,5,6},B={a,b,c}

1

2

3

4

5

6

a

b

c

f

 1 ∼2 ,3 ∼4,5 ∼6 

1

3

5

a

b

c

F

 (A)False ,F is well-defined.

 (B)True ,F is an onto function as all elements of co-domains are mapped. 

 (C)True ,F is a one-to-one function as all domains maps to different elements.

 (D)True , F is a bijective function as its both one-to-one and onto.

 Ans :(B) , (C) , (D)
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 *GATE CS 2023 | Question: 41

 Let X be a set and 2X denote the powerset of X.

 Define a binary operation Δ on 2X as follows: AΔB=(A−B)∪(B−A).

Let H=(2X,Δ). Which of the following statements about H is/are correct?

 (A) H is a group.

 (B) Every element in H has an inverse, but H is NOT a group.

 (C) For every A∈2X, the inverse of A is the complement of A.

 (D) For every A∈2X, the inverse of  A is  A.

 A Δ B = (A – B) ∪ (B – A)=(A∪B)-(A∩B)

 Closure: 2X is the powerset of X, A Δ B will always be a subset of 2X, so closure is satisfied.

 Associativity: union is associative , hence Δ satisfied this property 

 Identity Element: The identity element e would be the empty set {}.

 A Δ {} = (A – {}) ∪ ({} – A) = A ∪{} = A. So, the identity element exists.

 Inverse Element:The inverse element would be A itself

 A Δ A = (A – A) ∪ (A – A) = {} ∪ {} = {} (the identity element). 

 So, every element has an inverse.

 Ans : A,D
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 *GATE CS 2024 | Set 1 | Question: 22

 Let A and B be non-empty finite sets such that there exist one-to-one and onto 

functions (i) from A to B and (ii) from A×A to A∪B. The number of possible values of |A| is 

___________.

 Let |A| = n. Given that there exists a bijection between sets A and B, it follows that |B| = n.

 The number of elements in A × A is given by: |A × A| = n * n = n²

 There exists a bijection between A × A and A ∪ B. Thus: |A ∪ B| = n²

 |A ∪ B| ≤ |A| + |B|

 |A ∪ B| ≤ n + n = 2n

 n² ≤ 2n

 n ≤ 2

 Since n cannot be 0(As the sets are non-Empty) n = 1 or n = 2

 Maximum possible value=2

 Ans: 2
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 GATE CS 2024 | Set 1 | Question: 42

 Consider the operators ⋄ and defined by a⋄b=a+2b,a b=ab, for positive integers. Which of 
the following statements is/are TRUE?

 A.Operator ⋄ obeys the associative law B.Operator obeys the associative law

 C.Operator ⋄ over the operator obeys the distributive law

 D.Operator over the operator ⋄ obeys the distributive law

 # is associative if : (a # b) # c = a # (b # c).

 @ is distributive over # if a @ (b # c) = (a @ b) # (a @ c)

 A :  (a ◊ b) ◊ c = (a+2b) ◊ c = a + 2b + 2c

 a ◊ (b ◊ c) = a ◊ (b + 2c) = a + 2b + 4c

 (a ◊ b) ◊ c ≠ a ◊ (b ◊ c). 

 B: (a b) c = (ab) c = abc.

 a (b c) = a (bc) = abc

 (a b) c = a (b c). 

 C: a ◊ (b c) = a ◊ (bc) = a + 2bc

 (a ◊ b) (a ◊ c) = (a + 2b) (a+2c) 

= a2+2ac+2ab+4bc.

 a ◊ (b c) ≠ (a ◊ b) (a ◊ c).

 D: a (b ◊ c) = a (b+2c) = ab + 2ac

 (a b) ◊ (a c) = (ab) ◊ (ac) = ab + 2ac.

 a (b ◊ c) = (a b) ◊ (a c).  Ans: (B) & (D) 
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 *GATE CS 2024 | Set 2 | Question: 24

 Let P be the partial order defined on the set {1,2,3,4} as follows 

P={(x,x)∣x∈{1,2,3,4}}∪{(1,2),(3,2),(3,4)}

 The number of total orders on {1,2,3,4} that contain P is __________.

 If (S, ≤ ) is a poset and every two elements of S are comparable, S is called a totally ordered or 

linearly ordered set, and is called a total order or a linear order. 

 1→2 ,3 →2 , 3→4

 Total Order Set: [1,3,2,4]; [1,3,4,2]; [3,1,2,4]; [3,1,4,2]; [3,4,1,2]

 There will be a total of 5 total orders.

 Ans : 5
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 *GATE CS 2024 | Set 2 | Question: 53

 Let Zn be the group of integers {0,1,2,…,n−1} with addition modulo n as the group operation. 

The number of elements in the group Z2×Z3×Z4 that are their own inverses is ___________.

+2 0 1

0 0 1

1 1 0

 Z2={0,1}

 0 inverse=0 ,1 inverse=1

 The number of elements in Z2 that are self inverses is 2 

+3 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1
 Z3={0,1,2}

 0 inverse=0 

 The number of elements in Z3 that are self inverses is 1 +4 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

 Z4={0,1,2,3}

 0 inverse=0 ,2 inverse=2

 The number of elements in Z4 that are self inverses is 2

 The number of elements in the group Z2×Z3×Z4 that are 
their own inverses is 2*1*2=4

 Ans : 4
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