
GATE CS Lectures

By

Monalisa Pradhan

Data Structure

Chapter 2: stacks, queues

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Section 4: Programming and Data Structures

Programming in C. Recursion.Arrays, stacks, queues, linked lists,

trees, binary search trees, binary heaps, graphs.

 Chapter 1:Arrays

 Chapter 2: stacks, (Stack permutation , Postfix , Recursion, TOH)

queues (Linear Queue, Circular Queue)

 Chapter 3: linked lists

 Chapter 4: trees, binary search trees, binary heaps

 Chapter 5: graphs
M

on
ali

sa
CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Stack

 LIFO or FILO model

 One side open the other side is closed.

 Operation :

 PUSH(X)- Check overflow condition and Insert an element X.

 POP()- Check Underflow condition then delete top most element.

 Some more operation are PEEK(),CHANGE(),ISEMPTY(),ISFULL(),GET TOP()

 Stack Permutation :

 Each element Pushed in/Pop out.

 The elements are poped out based on design sequence.

 No of Stack Permutation =

N 2 3 4

Stack permutation 2(12,21) 5(123,132,213,231,321) 14

2nCn

n+1

Push Pop

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Precedence Associatively

(),{},[]

^ Right-Left

*,/ Left-Right

+,- Left-Right

 Infix :<operand1><operator><operand2>

 Prefix : <operator> <operand1>< operand2>

 Postfix:<operand1><operand2><operator>

 Example : Infix : (A+B) * (C-D) , Prefix : *+AB-CD , Postfix: AB+CD-*

 Conversion Process :The relative position of operand not changed. Position of

operator change as per precedence and associative rule .

 Infix: (1+2)*3-10/5+2^3^1

 Postfix: 1 2+ 3* 10 5/- 2 3 1^^+

 Prefix: +-*+1 2 3 /10 5 ^2 ^3 1

Infix expression evaluation

(1+2)*3-10/5+2^3^1

=3*3-10/5+2^3^1

=3*3-10/5+2^3

=3*3-10/5+8

=9-10/5+8

=9-2+8 = 7+8 =15

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 How to evaluate postfix expression using stack

 1.Operand :Push 2.Operator :Pop top 2 operand ,evaluate, Push result

 Postfix : 4 3 * 2 / 1 8 9^ ^ +2 3 * - [Infix :4*3/2+1^8^9 -2*3]

 Push 4=>Push 3 =>Pop,*,Push=>Push 2 =>Pop ,/,Push=>Push 1=>Push 8=>Push 9

3

4

4 12 2

12

6 1

6

8

1

6

9

8

1

6 => Pop,^,Push=>Pop ,^,Push=> Pop ,+,Push=>Push 2=>Push 3

89

1

6

1

6

7 2

7

3

2

7

 => Pop,*,Push
6

7

 => Pop,-,Push 1

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Recursion:

 The process in which a function calls itself directly or indirectly is called recursion

and the corresponding function is called as recursive function.

Types of Recursion

Direct Indirect Nested Excessive

Tail

Ex:Fact

Non Tail

Ex: ToH

A() {B()}

 B() {A()}

A(){B()}

B(){C()}…

Ex:Fibonacci no

 Tail Recursion: A recursive function is tail recursive when recursive call is the last

thing executed by the function.

 Excessive Recursion : the amount of stack space required increases dramatically

with the amount of recursion that occurs.

 This can lead to program crashes if the stack runs out of memory.

 It doesn’t remember previous evaluated value .Recursion by default excessive .

 Stack contain inactive record .

 In Recursion tree the behavior of tracing is preorder .

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Ex:

F(x)

{

F(x-1)

Print (x)

F(x-1)

}

Output for F(3) ?

F(3)

F(2) Print(3) F(2)

F(1) Print(2) F(1) F(1) Print(2) F(1)

F(0) Print(1) F(0) F(0)Print(1) F(0)F(0) Print(1) F(0) F(0) Print(1) F(0)

 Output for F(3) is 1213121

 Tower of Hanoi

 Tower of Hanoi is a mathematical puzzle where we have three rods and n disks.

 The objective of the puzzle is to move the entire stack to another rod, obeying the

following simple rules:

 1) Only one disk can be moved at a time.

 2) a disk can only be moved if it is the uppermost disk on a stack.

 3) No disk may be placed on top of a smaller disk.

 Take an example for 2 disks :

 Let rod 1 = 'A', rod 2 = 'B', rod 3 = 'C'.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Step 1 : Shift first disk from 'A' to 'B'.
 Step 2 : Shift second disk from 'A' to 'C'.
 Step 3 : Shift first disk from 'B' to 'C'.
 The pattern here is :
 Shift 'n-1' disks from 'A' to 'B'.
 Shift last disk from 'A' to 'C'.
 Shift 'n-1' disks from 'B' to 'C'.

 Void TOH(int n,char L,char M,Char R)

 {If n!=0

 TOH(n-1,L,R,M)

 Print L to R

 TOH(n-1,M,L,R)

 }

 Recurrence relation of TOH :T(n)=2T(n-1)+1

 Total move=2n -1
n 1 2 3 4

No of move 1 3 7 15

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Queue

 FIFO OR LILO model.

 Pointers: Front,Rear.

 Operation:

 Enqueue: Inserts an item to the queue.

 Dequeue: Deletes an item from the queue.

 Some other operation are peek(),isfull() ,isempty()

 In a linear queue, the traversal through the queue is possible only once,once an

element is deleted, we cannot insert another element in its position.

Void enqueue(int x)

{ If (rear==N-1)

 print (“overflow”);

else if (front==-1 && rear==-1)

 { front=rear =0;

 queue[rear]=x;}

else {rear++;

queue[rear]=x;}

void dequeue()

{if (front==-1 && rear==-1)

 print (“Underflow”)

 else if(front =rear)

 front=rear=-1;

 else

 front++

}

-1 0 1 2 3 4

Front Rear

 Ex: enqueue(2),

enqueue(5),

enqueue(7),dequ

eue, enqueue(6),

enqueue(1),dequ

eue, enqueue(8),

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 This disadvantage of a linear queue is overcome by a circular queue.

 Circular Queue:

 In Circular Queue (FIFO) the last position is connected back to the first position of

Queue to make a circle

 Operations on Circular Queue: enqueue,dequeue .

Void enqueue(int x)

{if ((rear+1)%N)==front

 print(overflow);

 else if(front==-1&& rear==-1)

 {front=rear=0;

 queue[rear]=x;}

else

 { rear =(rear+1)%N;

 queue[rear]=x;} }

void dequeue()

{

if (front==-1 && rear==-1)

 print (“Underflow”)

else if(front =rear)

 front=rear=-1;

 else

 front=(front+1)%N

}

-1 0 1 2 3 4

Front Rear

 Ex: enqueue(2), enqueue(5), enqueue(7),dequeue, enqueue(6),

enqueue(1),dequeue, enqueue(8), enqueue(4), enqueue(0),

dequeue,

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

	Slide 1: Data Structure Chapter 2: stacks, queues
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

