
GATE CS Lectures

By

Monalisa Pradhan

Data Structure

Chapter 2: stacks, queues

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Section 4: Programming and Data Structures

Programming in C. Recursion.Arrays, stacks, queues, linked lists,

trees, binary search trees, binary heaps, graphs.

 Chapter 1:Arrays

 Chapter 2: stacks, (Stack permutation , Postfix , Recursion, TOH)

queues (Linear Queue, Circular Queue)

 Chapter 3: linked lists

 Chapter 4: trees, binary search trees, binary heaps

 Chapter 5: graphs
M

on
ali

sa
CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Stack

 LIFO or FILO model

 One side open the other side is closed.

 Operation :

 PUSH(X)- Check overflow condition and Insert an element X.

 POP()- Check Underflow condition then delete top most element.

 Some more operation are PEEK(),CHANGE(),ISEMPTY(),ISFULL(),GET TOP()

 Stack Permutation :

 Each element Pushed in/Pop out.

 The elements are poped out based on design sequence.

 No of Stack Permutation =

N 2 3 4

Stack permutation 2(12,21) 5(123,132,213,231,321) 14

2nCn

n+1

Push Pop

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Precedence Associatively

(),{},[]

^ Right-Left

*,/ Left-Right

+,- Left-Right

 Infix :<operand1><operator><operand2>

 Prefix : <operator> <operand1>< operand2>

 Postfix:<operand1><operand2><operator>

 Example : Infix : (A+B) * (C-D) , Prefix : *+AB-CD , Postfix: AB+CD-*

 Conversion Process :The relative position of operand not changed. Position of

operator change as per precedence and associative rule .

 Infix: (1+2)*3-10/5+2^3^1

 Postfix: 1 2+ 3* 10 5/- 2 3 1^^+

 Prefix: +-*+1 2 3 /10 5 ^2 ^3 1

Infix expression evaluation

(1+2)*3-10/5+2^3^1

=3*3-10/5+2^3^1

=3*3-10/5+2^3

=3*3-10/5+8

=9-10/5+8

=9-2+8 = 7+8 =15

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 How to evaluate postfix expression using stack

 1.Operand :Push 2.Operator :Pop top 2 operand ,evaluate, Push result

 Postfix : 4 3 * 2 / 1 8 9^ ^ +2 3 * - [Infix :4*3/2+1^8^9 -2*3]

 Push 4=>Push 3 =>Pop,*,Push=>Push 2 =>Pop ,/,Push=>Push 1=>Push 8=>Push 9

3

4

4 12 2

12

6 1

6

8

1

6

9

8

1

6 => Pop,^,Push=>Pop ,^,Push=> Pop ,+,Push=>Push 2=>Push 3

89

1

6

1

6

7 2

7

3

2

7

 => Pop,*,Push
6

7

 => Pop,-,Push 1

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Recursion:

 The process in which a function calls itself directly or indirectly is called recursion

and the corresponding function is called as recursive function.

Types of Recursion

Direct Indirect Nested Excessive

Tail

Ex:Fact

Non Tail

Ex: ToH

A() {B()}

 B() {A()}

A(){B()}

B(){C()}…

Ex:Fibonacci no

 Tail Recursion: A recursive function is tail recursive when recursive call is the last

thing executed by the function.

 Excessive Recursion : the amount of stack space required increases dramatically

with the amount of recursion that occurs.

 This can lead to program crashes if the stack runs out of memory.

 It doesn’t remember previous evaluated value .Recursion by default excessive .

 Stack contain inactive record .

 In Recursion tree the behavior of tracing is preorder .

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Ex:

F(x)

{

F(x-1)

Print (x)

F(x-1)

}

Output for F(3) ?

F(3)

F(2) Print(3) F(2)

F(1) Print(2) F(1) F(1) Print(2) F(1)

F(0) Print(1) F(0) F(0)Print(1) F(0)F(0) Print(1) F(0) F(0) Print(1) F(0)

 Output for F(3) is 1213121

 Tower of Hanoi

 Tower of Hanoi is a mathematical puzzle where we have three rods and n disks.

 The objective of the puzzle is to move the entire stack to another rod, obeying the

following simple rules:

 1) Only one disk can be moved at a time.

 2) a disk can only be moved if it is the uppermost disk on a stack.

 3) No disk may be placed on top of a smaller disk.

 Take an example for 2 disks :

 Let rod 1 = 'A', rod 2 = 'B', rod 3 = 'C'.

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Step 1 : Shift first disk from 'A' to 'B'.
 Step 2 : Shift second disk from 'A' to 'C'.
 Step 3 : Shift first disk from 'B' to 'C'.
 The pattern here is :
 Shift 'n-1' disks from 'A' to 'B'.
 Shift last disk from 'A' to 'C'.
 Shift 'n-1' disks from 'B' to 'C'.

 Void TOH(int n,char L,char M,Char R)

 {If n!=0

 TOH(n-1,L,R,M)

 Print L to R

 TOH(n-1,M,L,R)

 }

 Recurrence relation of TOH :T(n)=2T(n-1)+1

 Total move=2n -1
n 1 2 3 4

No of move 1 3 7 15

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 Queue

 FIFO OR LILO model.

 Pointers: Front,Rear.

 Operation:

 Enqueue: Inserts an item to the queue.

 Dequeue: Deletes an item from the queue.

 Some other operation are peek(),isfull() ,isempty()

 In a linear queue, the traversal through the queue is possible only once,once an

element is deleted, we cannot insert another element in its position.

Void enqueue(int x)

{ If (rear==N-1)

 print (“overflow”);

else if (front==-1 && rear==-1)

 { front=rear =0;

 queue[rear]=x;}

else {rear++;

queue[rear]=x;}

void dequeue()

{if (front==-1 && rear==-1)

 print (“Underflow”)

 else if(front =rear)

 front=rear=-1;

 else

 front++

}

-1 0 1 2 3 4

Front Rear

 Ex: enqueue(2),

enqueue(5),

enqueue(7),dequ

eue, enqueue(6),

enqueue(1),dequ

eue, enqueue(8),

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 This disadvantage of a linear queue is overcome by a circular queue.

 Circular Queue:

 In Circular Queue (FIFO) the last position is connected back to the first position of

Queue to make a circle

 Operations on Circular Queue: enqueue,dequeue .

Void enqueue(int x)

{if ((rear+1)%N)==front

 print(overflow);

 else if(front==-1&& rear==-1)

 {front=rear=0;

 queue[rear]=x;}

else

 { rear =(rear+1)%N;

 queue[rear]=x;} }

void dequeue()

{

if (front==-1 && rear==-1)

 print (“Underflow”)

else if(front =rear)

 front=rear=-1;

 else

 front=(front+1)%N

}

-1 0 1 2 3 4

Front Rear

 Ex: enqueue(2), enqueue(5), enqueue(7),dequeue, enqueue(6),

enqueue(1),dequeue, enqueue(8), enqueue(4), enqueue(0),

dequeue,

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

	Slide 1: Data Structure Chapter 2: stacks, queues
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

