
GATE  CS PYQ

Solved By

Monalisa Pradhan

Data Structure

Chapter 2: stacks, queues

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS



 Let the three pegs be A, B and C.

 The goal is to move n pegs from A to C. 

 To move n discs from peg A to peg C: 

 move n-1 discs from A to B. This leaves disc n alone on peg A                  [n-1 move]

 move disc n from A to C [1 move]

 move n-1 discs from B to C so they sit on disc n    [n-1 move]

 So the recurrence relation for Tower of Hanoi is 

 T(n) = T(n-1)+1+T(n-1) 

 T(n) = 2T(n-1)+1

 Ans : (D) T(n) = 2T(n-1)+1

GATE 2012,Q16,1 Mark:

Q1

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS



 Queue full: (REAR+1) mod n == FRONT

 Queue empty: REAR == FRONT 

 Ans: (A)

Q2

GATE 2012,Q35,2 Mark

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS



 GATE CS 2013 | Question: 44
 Consider the following operation along with Enqueue and Dequeue operations on queues, 

where k is a global parameter. 
 MultiDequeue(Q)
 { m = k 
   while (Q is not empty) and (m > 0) 
  { Dequeue(Q) 
   m = m – 1 } } 
 What is the worst case time complexity of a sequence of queue operations on an initially empty 

queue?
 (A) Θ(n) (B) Θ(n+k) (C) Θ(nk)  (D) Θ(n2)
 If after n enqueue we perform multiDequeue.
 1. If k<n then one MultiDequeue run k times.
 2. If n<k then one MultiDequeue run n times.
 So Worst case time complexity for MultiDequeue is Θ(n).
 Three possible operations :Enqueue, Dequeue and MultiDequeue. 
 MultiDequeue is calling Dequeue k times.
 Since, the queue is initially empty, whatever be the order of these operations, there cannot be more 

number of Dequeue operations than Enqueue operations. 
 Hence, the total number operations will be n only.
 Ans : (A) Θ(n)

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS



 GATE 2014 set-2,Q41,2 Mark: Suppose a stack implementation supports an 

instruction REVERSE, which reverses the order of elements on the stack, in addition 

to the PUSH and POP instructions. Which one of the following statements is TRUE 

with respect to this modified stack?

(A) A queue cannot be implemented using this stack.

(B) A queue can be implemented where ENQUEUE takes a single instruction and 

DEQUEUE takes a sequence of two instructions.

(C) A queue can be implemented where ENQUEUE takes a sequence of three 

instructions and DEQUEUE takes a single instruction.

(D) A queue can be implemented where both ENQUEUE and DEQUEUE take a 

single instruction each 

 While ENQUEUE we REVERSE the stack, PUSH the element and then 

again REVERSE the stack. For DEQUE we simply POP the element. 

 Ans : C          
1 2 3 1

2

3

ENQUEUE 3

2

1

REVERSE

4

3

2

1

PUSH
REVERSE

1

2

3

4

DEQUEUE

POP 2

3

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS



10

Q 4

Push 10 Push 5

5

10

Pop top 2 element from stack do + and push result in stack

15

Push 60

60

15

Push 6

6

60

15

Pop top 2 element from stack do / and push result in stack

10

15

Pop top 2 element from stack do * and push result in stack

150

Push 8

8

150

Pop top 2 element from stack do - and push result in stack

142 Ans : (C) 142

GATE 2015 Set-3,Q12,1 Mark

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS



 T(n) = T(n-1) + T(n-3) +1 ; 
T(n) = 1 ; for  n < 1

 T(1)=T(0)+T(-2)+1=3 ,                                        T(2)= T(1)+T(-1)+1=3 + 1 + 1 = 5, 

 T(3) =T(2)+T(0)+1= 5 + 1 + 1 = 7 ,         T(4) = T(3)+T(1)+1= 7 + 3 + 1= 11 , 

 T(5) =T(4)+T(2)+1= 11 + 5 + 1 = 17,        T(6) = T(5) + T(3) + 1 =  17 + 7 + 1 = 25.

 Ans  : (B) 25

Q 5 GATE 2015 set-3,Q39,2 Mark

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS



M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS



 Since it is mentioned in the question that both of the operations are performed 

efficiently.

 Hence even the worst case time complexity will be O(1) by the use of the Circular 

queue there won't be any need of shifting in the array.

 Ans : (A) Both operations can be performed in O(1) time

Q 6

GATE 2016 set-1,Q10,1 Mark

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS



GATE 2016 set-1,Q41,2 Mark

Q 7

2

1

And  empty stackLet Q contain 2 1

while 1 1
2

while 2
1 2

while 3 2

1

while 4

•For 16 number it will run 16*16 time=256 

• Ans:256 

•Q is empty so while loop stop ,After 4 while loop  stop.

• For 2 number it run 2*2= 4 time,

•for 3 number it run 3*3=9 time M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS



 2-5+1-7*3  [+ have highest precedence ]

 =2-6-7*3    [- is right associatively so right – will operate first]  

 =2-(-1)*3   [- has more precedence over *]

 =3*3 =9

 Ans : 9

GATE 2016 set-1,Q45,2 Mark

Q 8

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS



 Since, Circular queue deletes an item using Front pointer and insert an element 

using Rear pointer. 

 If we want to insert an element into circular queue then we have to increment Rear 

pointer to next node then insert element. 

 Then after update the next pointer of Rear node to the Front node. 

 This method will have O(1) time for Insertion and Deletion.

 Only statement (ii) is true.

 Ans (B) II only

Q9:

GATE 2017 Set-2,Q13,1 Mark

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS



 GATE CS 2018 | Question: 3

 A queue is implemented using a non-circular singly linked list. The queue has a head pointer 

and a tail pointer, as shown in the figure. Let n denote the number of nodes in the queue. Let 

'enqueue' be implemented by inserting a new node at the head, and 'dequeue' be implemented 

by deletion of a node from the tail.

 Which one of the following is the time complexity                                                                    

of the most time-efficient implementation of                                                                       

'enqueue' and 'dequeue, respectively, for this                                                                           

data structure? (A)Θ(1),Θ(1) (B)Θ(1),Θ(n) (C)Θ(n),Θ(1) (D)Θ(n),Θ(n) 

 Enqueue, performs in constant time Θ(1), as it modifies only two pointers.

 We are traversing entire linked list for each Dequeue, so time complexity is Θ(n).

 Ans : (B)Θ(1),Θ(n) 

• Enqueue( )
• { P→Data=Data
• P → Next=Head
• Head=P } 

• Dequeue()

•  { temp=head

•      While(temp→Next→Next!=NULL)

•             temp=temp→next

•        temp→next=NULL

•        tail=temp}

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS



 GATE CS 2021 Set-1,Q21: Consider the following sequence of operations on an 
empty stack. Push(54);push(52);pop();push(55);push(62);s=pop(); 

 Consider the following sequence of operations on an empty queue.

 enqueue(21);enqueue(24);dequeue();enqueue(28);enqueue(32);q=dequeue(); 

 The value of s+q is ___________.

54

52 55

62

 s=pop()=62

21 24 28 32

 q=dequeue()=24

 s+q=62+24=86

 Ans:86

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS



 GATE CS 2022 | Question: 52

 Consider the queues Q1 containing four elements and Q2 containing none (shown as the 

Initial State in the figure). The only operations allowed on these two queues are Enqueue (Q, 

element) and Dequeue (Q). The minimum number of Enqueue operations on Q1 required to 

place the elements of Q1 in Q2 in reverse order (shown as the Final State in the figure) 

without using any additional storage is_________. 

 Step 1:Dequeue (Q1) , Enqueue (Q2, 1)

 Step 2:Dequeue (Q1) , Enqueue (Q2, 2)

 Step 3:Dequeue (Q2) , Enqueue (Q2, 1)

 Step 4:Dequeue (Q1) , Enqueue (Q2, 3)

 Step 5:Dequeue (Q2) , Enqueue (Q2, 2)

 Step 6:Dequeue (Q2) , Enqueue (Q2, 1)

 Step 7:Dequeue (Q1) , Enqueue (Q2, 4)

 Step 8:Dequeue (Q2) , Enqueue (Q2, 3)

 Step 9:Dequeue (Q2) , Enqueue (Q2, 2)
 Step 10:Dequeue (Q2) , Enqueue (Q2, 1)
 Ans : 0

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS



 GATE CS 2023 | Question: 49

 Consider a sequence a of elements a0= 1, a1=5, a2= 7, a3= 8, a4= 9, and a5= 2. 

The following operations are performed on a stack S and a queue Q, both of 

which are initially empty. 

I. push the elements of a from a0 to a5 in that order into S.

II. enqueue the elements of a from a0 to a5 in that order into Q.

III. pop an element from S.

IV. dequeue an element from Q.

V. pop an element from S.

VI. dequeue an element from Q. 

VII. dequeue an element from Q and push the same element into S.

VIII. Repeat operation VII three times.

IX. pop an element from S.

X. pop an element from S.

 The top element of S after executing the above operations is_______ . 

S

Q

I

1

5

7

8

9

2

II

1 5 7 8 9 2

III

IV

V

VI VII

7

VIII 8

9

2

IX

X

 Ans : 8 

8

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS



 GATE DA 2024 | Question: 22

 The fundamental operations in a double-ended queue D are:

 insertFirst(e) – Insert a new element e at the beginning of D. 

 insertLast(e) – Insert a new element e at the end of D. 

 removeFirst() – Remove and return the first element of D. 

 removeLast() – Remove and return the last element of D.

 In an empty double-ended queue, the following operations are performed:

 insertFirst(10) 

 insertLast(32)

 a ←removeFirst()

 insertLast(28) 

 insertLast(17)

 a ←removeFirst()

 a ← removeLast()

 The value of a is ______.

10 32

 a=10 

28 17

 a=32

 a=17

 Ans : 17

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS



 GATE CS 2024 | Set 1 | Question: 23

 Consider the operator precedence and associativity rules for the                       
integer arithmetic operators given in the table below.

 The value of the expression 3+1+5∗2/7+2−4−7−6/2 as per the                                                   
above rules is ________.

 (3+1)+5∗2/7+2−4−7−6/2

 =(4+5)∗2/7+2−4−7−6/2

 =9*2/(7+2)−4−7−6/2

 = 9*2/9−4−(7−6)/2

 = 9*2/9−(4−1)/2

 = 9*2/(9−3)/2

 = (9*2)/6/2

 =18/(6/2)

 =18/3

 =6

 Ans :6

 3 1 + 5 + 2 * 7 2 + 4 7 6 - - - 2 / /

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS



 GATE CS 2024 | Set 2 | Question: 38

 Let S1 and S2 be two stacks. S1 has capacity of 4 elements. S2 has capacity of 2 elements. S1 

already has 4 elements: 100, 200, 300, and 400, whereas S2 is empty, as shown below.

 Only the following three operations are available:

 PushToS2: Pop the top element from S1 and push it on S2. 

 PushToS1: Pop the top element from S2 and push it on S1. 

 GenerateOutput: Pop the top element from S1 and output it to the user.

 Note that the pop operation is not allowed on an empty stack and the push operation is not 

allowed on a full stack.Which of the following output sequences can be generated by using the 

above operations?
 (A) 100, 200, 400, 300 (B) 200, 300, 400, 100 
 (C) 400, 200, 100, 300 (D) 300, 200, 400, 100

 (A) 100, 200, 400, 300

 Before 100 first you need to pop 200 so not possible 

 (B) 200, 300, 400, 100 

 PushToS2 , PushToS2 , GenerateOutput 200, PushToS1 , GenerateOutput 

300 , PushToS1 , GenerateOutput 400 , GenerateOutput 100  , Possible

400

300

300400

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS



 (C) 400, 200, 100, 300 

 GenerateOutput 400 , PushToS2, GenerateOutput 200 ,

 GenerateOutput 100, PushToS1, GenerateOutput 300

 Possible

300

300

 (D) 300, 200, 400, 100

 PushToS2 , GenerateOutput 300, GenerateOutput 200

 PushToS1, GenerateOutput 400, GenerateOutput 100

 Possible

 Ans: 
 (B) 200, 300, 400, 100 
 (C) 400, 200, 100, 300 
 (D) 300, 200, 400, 100

400
400

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS


	Slide 1: Data Structure Chapter 2: stacks, queues  
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

