
GATE CS PYQ

Solved By

Monalisa Pradhan

Data Structure

Chapter 3: Linked List

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

GATE 2010,Q36,2M:The following C function takes a simply-linked list as input argument. It modifies the

list by moving the last element to the front of the list and returns the modified list. Some part of the code

is left blank.

typedef struct node {

int value;

struct node *next; }Node;

Node *move_to_front(Node *head) {

Node *p, *q;

if ((head == NULL: || (head→next == NULL))

return head;

q = NULL; p = head;

while (p→ next !=NULL)

{ q = p; p = p→next; }

return head; }

Choose the correct alternative to replace the blank line.

(A) q = NULL; p→next = head; head = p;

(B) q→next = NULL; head = p; p→next = head;

(C) head = p; p→next = q; q→next = NULL;

(D) q→next = NULL; p→next = head; head = p;

•p is travelling till the end of list and assigning

q to whatever p had visited & p takes next new

node.

•After completion of loop. Do these.

•(i) Make q as last(q → next = NULL;)

•(ii) Set next of p as head (p → next = head;)

•(iii) Make p as head(head = p)

•Ans :(D) q→next = NULL; p→next = head;

head = p;

1 → 2 → 3 → 4 \

4 → 1 → 2 → 3 \

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Q2:

 In Doubly linked list (sorted) Delete O(1) ,Insert O(N) ,Find O(N) ,

 Decrease O(N) [O(1) for decrease O(N) for sorting]

 Now number of each operation performed is given, so finally total complexity,

 Delete = O(1) × O(N) = O(N)

 Insert = O(N) × O(log N) = O(N log N)

 Find = O(N) × O(log N) = O(N log N)

 Decrease key = O(N) × O(N) = O(N2)

 So, overall time complexity is, O(N2).

 Ans: (C) O(N2)

GATE 2016 set-2,Q15,1Mark

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

Q3:Consider the C code fragment given below.

 typedef struct node { int data; node* next; } node;

 void join(node* m, node* n) { node* p = n;

 while(p→next !=NULL) { p = p→next; } p→next=m; }

 Assuming that m and n point to valid NULL-terminated linked lists, invocation of join

will A)append list m to the end of list n for all inputs.

 B)either cause a null pointer dereference or append list m to the end of list n.

 C)cause a null pointer dereference for all inputs.

 D)append list n to the end of list m for all inputs.

 m and n are valid Lists but not explicitly specified if the lists are empty or not.

 Case 1: If lists are not NULL : Invocation of join will append list m to the end of

list n if the lists are not NULL.

 For Example: Before join operation :n =1→2→3→null , m =4→5→6→null

 After join operation : 1→2→3→4→5→6→null

 Case 2: If lists are NULL : If the list n is empty and itself NULL, then joining and

referencing would obviously create NULL pointer issue.

 Ans : (B)either cause a null pointer dereference or append list m to the end of list n.

GATE 2017 set-1,Q8,1Mark

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 For insertion of node only head pointer is updated so θ(1) time.

 But if we have pointer to the tail of the list in order to delete it, we need the address of the

2nd last node which can be obtained by traversing the list which takes θ (n) time.

 Ans: (B) θ (1), θ(n)

GATE 2018,Q11,1Mark

Q4:

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 This question is ambiguous: “needs to be maintained in sorted order”, there are two

possible cases:

 1.Needs to be maintained in sorted order on each step (after each insertion).

 When we are inserting an element in to empty linked list and to perform sorted order

list of every element will take θ (n2).

 2.Needs to be maintained in sorted order on final step (only after all insertion).

 When we are inserting all elements into an empty linked list and to perform a sorted

list (using merge sort) after inserting all elements will take O(n log n) time.

 Ans: (C)Θ (n2)

GATE 2020,Q16,1Mark
Q5:

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2022 | Question: 5

 Consider the problem of reversing a singly linked list. To take an example, given the linked

list below,

 The reversed linked list should look like

 Which one of the following statements is TRUE about the time complexity of algorithms that

solve the above problem in O(1) space?

 A. The best algorithm for the problem takes 𝜃(n) time in the worst case.

 B. The best algorithm for the problem takes 𝜃(n log n) time in the worst case.

 C. The best algorithm for the problem takes 𝜃(n2) time in the worst case.

 D. It is not possible to reverse a singly linked list in O(1) space. 1 → 2 → 3

prev cur next
 While (Current != null)

 { next= current→next ;

 current →next=prev

 prev=current;

 current=next;}

 We need to traverse whole linked list so time complexity 𝜃(n) in worst case.

 Ans : A. The best algorithm for the problem takes 𝜃(n) time in the worst case

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

 GATE CS 2023 | Question: 3

 Let SLLdel be a function that deletes a node in a singly-linked list given a pointer to the node

and a pointer to the head of the list. Similarly, let DLLdel be another function that deletes a

node in a doubly-linked list given a pointer to the node and a pointer to the head of the list.

Let n denote the number of nodes in each of the linked lists. Which one of the following

choices is TRUE about the worst-case time complexity of SLLdel and DLLdel?

 (A) SLLdel is O(1) and DLLdel is O(n) (B) Both SLLdel and DLLdel are O (log n)

 (C) Both SLLdel and DLLdel are O(1) (D) SLLdel is O(n) and DLLdel is O(1)

 SLLdel

 A node temp is required to traverse the node.

 If (temp → next → data = = P → data)

 temp → next = P → next;

 free (P);

→ → → → →

Start P

 DLLdel

 P → prev → next = P → next;

 P → next → prev = P → prev;

 free (P);

⇔ ⇔ ⇔ ⇔ ⇔

Start P

 Ans : (D) SLLdel is O(n) and DLLdel is O(1)

M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS

	Slide 1: Data Structure Chapter 3: Linked List
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

