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 Section 4: Programming and Data Structures

Programming in C. Recursion.Arrays, stacks, queues, linked lists, 

trees, binary search trees, binary heaps, graphs. 

 Chapter 1:Arrays

 Chapter 2: stacks, queues

 Chapter 3: linked lists

 Chapter 4: trees(tree traversal), binary search trees,AVL tree, 

 Chapter 5: graphs M
on

ali
sa

CS

https://monalisacs.com/

https://www.youtube.com/@MonalisaCS



 Tree: It is a non linear data structure.

 Root: parent of all node, or level 0 node .

 Nodes , Edges 

 Parent node ,Child node

 Leaf node, Non leaf node

 Internal node, external node

 Path: sequence of consecutive edges from source to destination 

 Ancestor or Predecessor

 Descendant or Successor

 Subtree: subpart of tree. 

 Sibling: children of same parent

 Degree :number of edges connected with that node.

 Height: longest path from root to leaf

 Level : nodes at same height 

 Depth :length of path from root to that node

 Forest : collection of tree.

 A tree with n vertices has (n-1) edges.
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 Binary Tree 
 A tree having at most 2 children is called a binary tree. 
 Number of distinct binary tree can form =2ncn/(n+1).
 Maximum number of node at ith level is 2i node.
 Maximum number of nodes in a binary tree of height h is,2h+1 - 1 .
 Minimum number of nodes in a binary tree of height h is h + 1 .
 Maximum height of n node is n-1.
 Minimum height of n node is ceil(log(n+1)-1).
 If every node has either 0 or 2 children, a binary tree is called full.
 If the lowest d-1 levels of a binary tree of height d are filled and level d is partially 

filled from left to right, the tree is called complete.
 If all d levels of a height-d binary tree are filled, the tree is called perfect
 A full binary tree with n internal nodes has n+1 external nodes.
 A binary tree with n leaf have exactly n-1 nodes having two children M
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 Tree Traversal:

 InOrder :Traverse left subtree ,Visit Root, Traverse Right subtree

 PreOrder : Visit Root ,Traverse left subtree ,Traverse Right subtree

 PostOrder:Traverse left subtree ,Traverse Right subtree ,Visit Root
 InOrder :4 ,2 ,5 ,1 ,6 ,3 ,7    
 PreOrder:1 ,2 ,4 ,5 ,3 ,6 ,7    
 PostOrder:4 ,5 ,2 ,6 ,7 ,3 ,1
 Level Order traversal :Traverse level wise,  Ex:1 ,2 ,3 ,4 ,5 ,6 ,7
 Construct Binary Tree from InOrder , PreOrder , PostOrder traversal :
 To construct unique binary tree there most be InOrder with PreOrder or PostOrder.
 PreOrder: a,b  PostOrder :b,a
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 Construct binary tree from preorder and inorder traversal
 Preorder: a ,b ,c ,d ,e ,f ,g  
 Inorder :  b ,d ,c ,a ,f ,e ,g
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 Postorder:d ,c,b,f,g,e,a
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 Construct binary tree from postorder and inorder traversal
 Postorder: 3 ,4 ,2 ,6 ,5 ,1
 Inorder :   3 ,2 ,4 ,1 ,5 ,6

 Preorder:1 ,2 ,3 ,4 ,5 ,6

 LeftMostChild-rightSibling representation

 It is a different representation of an n-ary tree where instead of holding a reference to 

each and every child node, a node holds just two references, first a reference to it’s 

first child, and the other to it’s immediate next sibling. 
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 Self referential structure of binary tree
 struct BTnode  
 { struct BTnode *leftchild;
    char data;
  struct BTnode *rightchild; };
 Struct Btnode *T
 Access T→ data ,
 T → leftchild Descendant left ,
 T → rightchild(Descendant right)

Left child Data Right child
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 Program for finding number of terminal node
 Int do(struct Btnode *T)
 {if(!T) return 0;
  if (T→ 𝑙𝑐 = 𝑛𝑢ll && T → rc=null)
  return 1;
  else 
  return do(T → lc)+do(T → rc)
  }

g

 Binary Tree Applications:
 Arithmetic Tree or expression tree
 Parent: Operator ,Child =Operand
 Example a=b+c*d/e-f^g^h+i*j

 Precedence    Associatively

 (),[],{}  

 ^  Right-Left

 *,/  Left-Right

 +,-  Left-Right
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 Binary search tree

 A Binary Search Tree (BST) is a Binary tree in which all the nodes follows

 The value of the key of the left sub-tree is less than the value of its parent (root)

 The value of the key of the right sub-tree is greater than or equal to the value of its 

parent (root) 

  left_subtree (keys) < node (key) ≤ right_subtree (keys) 

  Traverse inorder get sorted list.

 Create BST:Very first node is root , for other node start comparing with root ,find 

proper position and insert.

 Insert:first locate its proper location. Start searching from the root node, then if the 

data is less than the key value, search for the proper location in the left subtree and 

insert the data. Else search for the proper location in the right subtree and insert the 

data

 Example : 4 ,2 ,3 ,6 ,5 ,7 ,1
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5 71 InOrder: 1 ,2 ,3 ,4 ,5 ,6 ,7
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 Delation:

  After delation the order must remain same,the tree can be modified but not the order.

 0 children :delate it.

 One children or one subtree :connect to grand parent .

 Both children or both subtree: replace with inorder successor or predecessor .

 The time efficiency of searching, insertion, and deletion,which are all in ϴ(log n), 

but only in the average case.

 In the worst case, these operations are in ϴ(n) because the tree can degenerate into a 

severely unbalanced one with its height equal to n-1.

 BST of inserting 4 ,2 ,3 ,6 ,5 ,7 ,1, 9 , Delate 5,7,4

9
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 AVL Trees

 AVL trees were invented in 1962 by two Russian scientists, G. M. AdelsonVelsky 

and E. M. Landis .

 An AVL tree is a binary search tree in which the balance factor of every node, which 

is defined as the difference between the heights of the node’s left and right subtrees, 

is either 0 or +1 or -1. 

 A rotation in an AVL tree is a local transformation of its subtree rooted at a node 

whose balance has become either +2 or -2.

 There are four types of rotations. 

1 .Single right rotation, or R-rotation  2.single left rotation, or L-rotation
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 The operations of searching and insertion and deletion are ϴ(log n) in the worst case.

 Construction of an AVL tree for the list 5, 6, 8, 3, 2, 4, 7 by successive insertions

3.double left-right rotation (LR-rotation)
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4.double right-left rotation (RL-rotation)
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 Deletion is same as BST but after every deletion we need to check balance factor and 

balance height by rotation .

 The drawbacks of AVL trees are frequent rotations and the need to maintain balances 

for its nodes.
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